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ABSTRACT
Machine learning methods have been widely used in di!erent applications, including process control and
monitoring. For handling statistical process control (SPC) problems, conventional supervised machine learn-
ing methods (e.g., arti"cial neural networks and support vector machines) would have some di#culties.
For instance, a training dataset containing both in-control and out-of-control (OC) process observations is
required by a supervised machine learning method, but it is rarely available in SPC applications. Further-
more, many machine learning methods work like black boxes. It is often di#cult to interpret their learning
mechanisms and the resulting decision rules in the context of an application. In the SPC literature, there
have been some existing discussions on how to handle the lack of OC observations in the training data,
using the one-class classi"cation, arti"cial contrast, real-time contrast, and some other novel ideas. However,
these approaches have their own limitations to handle SPC problems. In this article, we extend the self-
starting process monitoring idea that has been employed widely in modern SPC research to a general
learning framework for monitoring processes with serially correlated data. Under the new framework,
process characteristics to learn are well speci"ed in advance, and process learning is sequential in the sense
that the learned process characteristics keep being updated during process monitoring. The learned process
characteristics are then incorporated into a control chart for detecting process distributional shift based on
all available data by the current observation time. Numerical studies show that process monitoring based
on the new learning framework is more reliable and e!ective than some representative existing machine
learning SPC approaches.
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1. Introduction
Statistical process control (SPC) provides a powerful tool for
online process monitoring in the manufacturing industry, inter-
net tra!c management, disease surveillance, and many other
applications (Hawkins and Olwell 1998; Montgomery 2012;
Qiu 2014). One major task of SPC is to detect distributional
shi"s in certain quality characteristics from an in-control (IC)
distribution, and give signals once such shi"s are detected. The
SPC problem is o"en challenging due to complexity of the
observed process data. This article aims to tackle the challeng-
ing SPC problem by developing a general sequential learning
framework.

In the SPC literature, there have been many existing methods
for various process monitoring applications. Early SPC research
is designed mainly for monitoring production lines in the man-
ufacturing industry under the conventional assumptions that
process observations at di#erent observation times are inde-
pendent and identically distributed with a common parametric
distribution (e.g., normal distribution) when the related pro-
cess is IC (e.g., Crosier 1998; Hawkins, Qiu, and Kang 2003;
Lowry et al. 1992). In the past two decades, SPC has found
many new applications in public health, environmental science,
business management, and other industries and disciplines. The
conventional model assumptions mentioned above are rarely
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valid in these applications. For instance, the observed daily cases
of the in$uenza-like illness at di#erent clinics and hospitals
in the United States would be both spatially and temporally
correlated, and their distribution can hardly be described well
by a parametric distribution (e.g., Yang and Qiu 2020). Thus,
in recent SPC research, some more $exible control charts have
been developed for handling cases when the IC process dis-
tribution does not have a parametric form (e.g., Chakraborti
and Graham 2019; Qiu 2018), or when process observations
are serially correlated (e.g., Capizzi and Masarotto 2008; Pra-
japati and Singh 2012; Xue and Qiu 2020). Recent overviews
of di#erent SPC charts, especially those related to big data and
Industry 4.0, can be found in Qiu (2020) and Reis and Gins
(2017).

In the recent years, machine learning methods have been
under rapid development (e.g., Aggarwal 2018; Hastie, Tibshi-
rani, and Friedman 2001). A conventional machine learning
method tries to approximate an application by a computer
algorithm a"er learning the data structure of the related
problem from a training dataset. An attractive feature of such
methods is their $exibility, in the sense that they usually do
not impose restrictive model assumptions explicitly. For this
reason, machine learning methods have been used widely
in di#erent applications, including SPC. An SPC problem
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is essentially a sequential classi%cation problem, in which
the status of a process should be classi%ed into either the
IC or the out-of-control (OC) status at each time during
process monitoring. To solve a classi%cation problem by
a supervised machine learning method, a training dataset
containing observations of both classes (e.g., IC and OC)
is required, and then a classi%cation rule can be developed
by a computer algorithm (e.g., random forest (RF)) from
the training dataset. However, in many SPC applications, we
only have an IC dataset available beforehand, which is o"en
collected a"er a proper Phase I process monitoring (cf., Jones-
Farmer et al. 2014), and no OC process observations would be
available in advance. Thus, it is di!cult to apply a conventional
supervised machine learning method to the SPC problem
directly.

To overcome the di!culty mentioned above, Tuv and Runger
(2003) suggested the so-called arti!cial contrast approach,
consisting of the following two steps: (i) an arti%cial dataset
was generated from a speci%c o#-target distribution (e.g., a
uniform distribution) and observations in this dataset were
regarded as OC data, and (ii) a classi%cation rule was then
developed from the training data, which combine the IC data
and the arti%cial OC data, by a regular supervised machine
learning algorithm (e.g., RF). See Hu, Runger, and Tuv (2007),
Hwang, Runger, and Tuv (2007), and Li, Runger, and Tuv
(2006) for some modi%cations and generalizations. Of course,
the arti%cial OC data generated in the above method may
not represent the actual o#-target process observations well
in a given application. To overcome this limitation, Deng,
Runger, and Tuv (2012) suggested the so-called real-time
contrast (RTC) method, in which previous process observations
in a window of the current observation time were treated as
OC data, they were combined with the IC data to form a
training dataset, and then a classi%cation rule was developed
accordingly from the training dataset. An alternative strategy
to employ machine learning algorithms for SPC is to use
the so-called one-class classi!cation (OCC) procedures, %rst
discussed in Sun and Tsung (2003). OCC is based on the
support vector data description (SVDD) approach in the
computer science literature (Tax and Duin 2004), and its
main idea is to envelop a one-class training dataset with the
volume as small as possible. Then, the boundary found by
OCC can be used as a classi%cation rule. In the context of
SPC, the IC dataset obtained before online process monitoring
can be used as the one-class training dataset. Then, a future
process observation can be judged as IC if it is within the
boundary of the training dataset found by OCC, and OC
otherwise. There are several di#erent OCC-based control
charts. See, for instance, He, Jiang, and Deng (2018), Sukchotrat,
Kim, and Tsung (2010), and the references cited therein.
For recent overviews on control charts constructed based
on machine learning approaches, see Megahed and Jones-
Farmer (2015), Weese et al. (2016), and Zhang, Tsung, and Zou
(2015).

A machine learning method is o"en considered as a “black
box” in describing the observed data of a process in the sense
that it is usually di!cult to interpret its learning mechanism and
the statistical properties of the resulting decision rule. Its perfor-
mance also depends heavily on how well a training dataset rep-

resents the population to study. These features are shared by the
control charts discussed above that are based on machine learn-
ing algorithms. For instance, in an arti%cial contrast approach,
the arti%cial OC process observations generated from a speci%c
parametric (e.g., uniform) distribution may not represent actual
OC process observations well, which could cause unsatisfactory
performance of the related control chart. Therefore, such SPC
charts based on the machine learning approaches have much
room for improvement.

In an SPC application, an IC dataset is routinely collected
a"er a Phase I analysis for estimating certain IC parameters,
and then the estimated IC parameters could be used in con-
structing a Phase II control chart for online process moni-
toring (Qiu 2014, p. 7). By comparing this common practice
of process monitoring in the SPC literature with the OCC-
based control charts discussed above, we can see that the two
strategies share some similarities in that an IC dataset is used
for estimating the IC process distribution and the estimated
IC process distribution is then used in the decision-making at
each time point during online process monitoring. In practice,
the IC dataset is o"en quite small. Consequently, a relatively
large variability in the estimated IC parameters could negatively
a#ect the performance of a Phase-II control chart. To overcome
this limitation, Hawkins (1987) suggested a self-starting chart,
by which process observations at a given time point are com-
bined with the IC data if the process is declared to be IC at
that time point, and then the IC parameter estimates can be
updated using the combined IC dataset for process monitoring
at the next time point. Compared to the conventional SPC
charts, the self-starting chart can alleviate the dependence of
its performance on the IC data due to the updating mech-
anism for the IC parameter estimates, although it has been
demonstrated that its IC performance still has certain variability
due to the randomness of the IC data (Keefe, Woodall, and
Jones-Farmer 2015). This self-starting process monitoring idea
has been widely used in the SPC literature (e.g., Hawkins and
Maboudou-Tchao 2007, Zou, Zhou, and Wang 2007). Based
on this idea, we develop a general learning framework in this
article for online process monitoring. In the new framework,
the data structure to learn is well speci%ed, or it is “trans-
parent” with regard to what should be learned about the data
structure. The new learning process is sequential in the sense
that its training data keep being expanded and its learned IC
data structure keeps being updated during online process mon-
itoring. Because of these features, the new learning method is
referred to as transparent sequential learning (TSL). Under this
framework, the learned IC data structure is then used in con-
structing a Phase II control chart for online process monitoring.
The proposed TSL-based process monitoring scheme can be
used for online monitoring of both univariate and multivariate
numerical processes with serially correlated observations. The
related quality variables could be mutually correlated, and have
a nonparametric distribution. The idea of TSL-based process
monitoring is actually general. A"er proper modi%cations, it
should be able to solve other SPC problems, including dynamic
process monitoring and pro%le monitoring, which is le" for
future research.

Compared to the existing machine learning control charts
discussed above, the proposed TSL-based process monitoring
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scheme has at least the following strengths. First, it is $exi-
ble enough to handle processes with serially correlated data,
while the existing machine learning control charts are designed
mainly for monitoring processes with independent data. Sec-
ond, because the TSL-based process monitoring scheme is based
on the self-starting idea and its IC data keep being expanded
before a signal is given, it can provide a reliable online process
monitoring with a relatively small initial IC data. As a compari-
son, the existing machine learning control charts usually require
a quite large training data to have a reliable performance. Third,
the data structure to learn from the IC data is well-de%ned in
the TSL-based process monitoring scheme, and the related chart
would give a signal once it detects a di#erence between the
structure of the newly observed data and the learned structure
of the IC data. This feature of transparent learning could make
the related chart e#ective since the learned data structure has
been used in the construction of the chart and a shi" in any
component of such structure would trigger a signal. As a com-
parison, the existing machine learning control charts are more
generic and would be less sensitive to a shi" in a component
of the de%ned data structure. These intuitive observations will
be con%rmed later by numerical studies. In the SPC literature,
many self-starting charts have been developed for handling
various process monitoring tasks (Qiu 2014, secs. 4.5 and 5.4).
However, as far as we know, there is limited existing discussion
on self-starting monitoring of certain processes, including mul-
tivariate processes with nonstationary serial data correlation.
Such a challenging SPC problem can be handled properly by the
proposed TSL-based process monitoring scheme.

The remaining parts of the article are organized as follows.
In Section 2, the proposed learning framework TSL and the
TSL-based process monitoring scheme are described in detail.
Numerical performance of the TSL-based process monitoring
scheme is investigated in Section 3 by several simulation stud-
ies. A real-data example to demonstrate the application of the
proposed method is discussed in Section 4. Some remarks con-
clude the article in Section 5. To save space, some materials are
presented in a supplementary %le.

2. Process Monitoring by Transparent Sequential
Learning

In this section, the proposed learning framework TSL and the
TSL-based process monitoring scheme are described in detail.
It should be pointed out that the current TSL-based process
monitoring scheme is described mainly for Phase II online mon-
itoring of processes whose quality characteristics are observed
at the same equally spaced times, a"er the related processes
being adjusted properly by Phase I SPC methods. In practice,
Phase I SPC is an indispensable step to adjust and control a
process at its initial stage. See related discussions in Capizzi and
Masarotto (2013), Jones-Farmer et al. (2014), and the references
cited therein.

2.1. Speci!c Process Characteristics to Learn and the TSL
Framework

Assume that X = (X1, X2, . . . , Xp)′ is a vector of p ≥ 1
numerical quality characteristics to monitor about a sequential

process. Its observation at time n is denoted as Xn =
(Xn1, Xn2, . . . , Xnp)′. To online monitor the sequential process
{Xn, n ≥ 1}, an IC dataset X IC = {X−m0+1, X−m0+2, . . . , X0}
of size m0 is assumed to be available in advance. Our major
goal is to detect a distributional shi" as soon as possible during
online process monitoring. Once a signal of shi" is triggered
by a control chart, process experts need to make a judgment
whether the detected shi" is practically important and %gure
out its root causes if the answer is positive (cf., Sall 2018).

Process characteristics to learn: Data structure of the process
{Xn, n ≥ 1} can be described by (i) the distribution of Xn at
each n, and (ii) the serial data correlation among observations
{Xn, n ≥ 1} at di#erent time points. When the process is IC, each
observation is assumed to follow the IC process distribution,
denoted as F0(x), for any x ∈ Rp, and the IC serial data
correlation can be described by cov(Xi, Xi′), for any i, i′ ≥ 1.
Thus, the main process characteristics for TSL to learn from the
observed data include F0(x) and cov(Xi, Xi′).

Obviously, there are so many unknown quantities in F0(x)

and cov(Xi, Xi′), and it may not be realistic to estimate all of
them from the observed data. One reasonable solution is to
develop strategies to simplify these quantities in a way that the
learning task becomes manageable but the restriction on the
IC data structure is still $exible enough to cover many process
monitoring applications. In this article, we present the TSF
learning framework in a special case brie$y described below.
In many applications it is reasonable to assume that the cor-
relation between two process observations gradually decreases
when their observation times get farther away. This assump-
tion can be approximated by the assumption that γ n(s) :=
cov(Xn, Xn−s) = 0 when s ≥ bmax and n ≥ 1, where bmax is
a parameter denoting the time range of serial data correlation.
Here, γ n(s) is allowed to depend on n (i.e., the serial data
correlation could be nonstationary). In some applications, if
the serial data correlation can be assumed to be stationary,
then γ n(s) would not depend on n. In such cases, γ n(s) can
be simply written as γ (s). In this article, we will discuss both
cases when the serial data correlation is stationary or non-
stationary. For the IC distribution F0(x), we are o"en concerned
about its mean µ0 and covariance matrix !0 in the SPC litera-
ture since these quantities are routinely used for measuring the
quality/performance of the related process. In the special case
described above, the major IC process characteristics for TSL
to learn from the observed data are restricted to µ0, !0 and
{γ n(s), 0 ≤ s ≤ bmax, n ≥ 1}.

The TSL framework: Our proposed learning framework TSL
works as follows. The IC parameters are initially estimated from
the IC data XIC, and the initial estimates are then used for online
process monitoring. At the current time point during sequential
online process monitoring, if the TSL-based control chart claims
that the related process is IC, then the IC parameter estimates
get updated properly a"er the observed data at the current time
point are combined with the IC data. In that way, TSL keeps
learning from the sequentially collected process observations
about the IC process characteristics until a shi" is detected by
a TSL-based control chart.

Initial parameter estimates: To estimate the IC parameters
from the IC data XIC, there are two general methods. One is
based on the maximum likelihood estimation, and the other
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is based on the moment estimation. Because the %rst method
requires parametric forms to describe the IC process distribu-
tion and the IC serial data correlation which are unavailable
here, the moment estimation is considered here. In cases when
the serial data correlation is stationary, the moment estimates of
the IC parameters are

µ̂
(0)
0 = 1

m0

0∑

i=−m0+1
Xi

γ̂ (0)(s) = 1
m0 − s

−s∑

i=−m0+1

(
Xi+s − µ̂

(0)
0

) (
Xi − µ̂

(0)
0

)′
,

for 0 ≤ s ≤ bmax. (1)

Because !0 = γ (0), the initial estimate of !0 is !̂
(0)
0 = γ̂ (0)(0).

In cases when the serial data correlation is nonstationary, the
covariance matrices {γ n(s), 0 ≤ s ≤ bmax, −m0 + 1 ≤ n ≤ 0}
can be estimated by the following weighted moment estimates:
for −m0 + 1 ≤ n ≤ 0 and 0 ≤ s ≤ bmax,

γ̂ n(s) =

−s∑
i=−m0+1

(
Xi+s − µ̂

(0)
0

) (
Xi − µ̂

(0)
0

)′

K
(
min(|i + s − n|, |i − n|)/g

)

−s∑
i=−m0+1

K
(
min(|i + s − n|, |i − n|)/g

) , (2)

where K(u) = 3
4 (1 − u2)I(|u| ≤ 1) is the Epanechnikov

kernel function, and g is a bandwidth. In Equation (2), γ̂ n(s) is a
weighted average of all terms (Xi+s −µ̂

(0)
0 )(Xi −µ̂

(0)
0 )′, in which

at least one of i+s and i is in the neighborhood (n−g, n+g) and
the weight is determined by the kernel function. In the kernel
smoothing literature, the Epanechnikov kernel function is o"en
used because of its good theoretical properties (Epanechnikov
1969). The bandwidth g can be chosen by minimizing the
following cross-validated prediction error (PE):

PE(g) = 1
m0

0∑

i=−m0+1

(
Xi − X̂−i

)′ (Xi − X̂−i
)

,

where X̂−i is the predicted value of Xi obtained by the kriging
method (Cressie 1990) described below. For −m0 + 1 ≤ i ≤ 0,
let Y−i = (Xmax(−m0+1,i−g), . . . , Xi−1, Xi+1, . . . , Xmin(0,i+g)) be
the matrix of IC observations with their indices in the neigh-
borhood [i − g, i + g] and with Xi excluded, and ê−i = Y−i −
(µ̂

(0)
0 , . . . , µ̂(0)

0 , µ̂(0)
0 , . . . , µ̂(0)

0 ) be the corresponding matrix of
residuals. Then, the predicted value X̂−i is de%ned to be X̂−i =
µ̂

(0)
0 + V̂ ′

i,−iV̂
−1
−i ê−i, where V̂i,−i is the estimated covariance

matrix between Xi and Y−i, V̂−i is the estimated covariance
matrix of Y−i, and both of them can be computed from {γ̂ n(s)}
de%ned in Equation (2).

2.2. TSL-Based Online Process Monitoring

In this part, we discuss TSL-based online monitoring of the
process observations {Xn, n ≥ 1} in cases when they are
serially correlated with the correlation coe!cients {γ n(s), 0 ≤
s ≤ bmax, n ≥ 1}. In the SPC literature, most conventional

control charts are designed for cases when process observations
are assumed to be serially uncorrelated. So, at the current
time point n, a"er the process observation Xn is obtained, it
needs to be decorrelated with all previous process observations
before a control chart is applied. Under the TSL learning
framework, if the chart declares the process to be IC at n, then
Xn can be combined with the IC dataset and the estimates
of the IC parameters can get updated from the combined IC
dataset. Otherwise, the chart gives a signal of shi". The entire
TSL-based online process monitoring procedure is demon-
strated in Figure 1, and its major components are described
brie$y below.

Data decorrelation: At the current time point n, we would like
to decorrelate the observation Xn with all previous observations
{Xi, i ≤ n − 1}. Because of the assumption that two process
observations are uncorrelated if their observation times are
more than bmax apart, we only need to decorrelate Xn with
{Xi, n − bmax ≤ i ≤ n − 1}. Since data decorrelation needs
to be executed at each observation time during online process
monitoring, reduction of computing time is important. To this
end, You and Qiu (2019) suggested using the spring length
concept that was originally proposed in Chatterjee and Qiu
(2009). Assume that a CUSUM chart is used in the proposed
TSL-based process monitoring scheme. Then, the spring length
Tn at time n is de%ned to be the number of observation times
between n and the last time when the CUSUM charting statistic
is reset to zero. Because the CUSUM chart has the restarting
mechanism that all process observations collected before the
time n−Tn are all ignored in the subsequent process monitoring,
Xn only needs to be decorrelated with observations collected at
the previous bn = min{Tn−1, bmax} time points, where Tn−1,
instead of Tn, is used here since Tn is unavailable yet before
a decision is made about the process status at time n. Due
to the fact that Tn−1 is o"en a single-digit integer when the
process is IC, the computing time can be reduced substantially
by using it here. Furthermore, it has been shown in You and
Qiu (2019) that (i) a distributional shi" in the original data
would be attenuated by data decorrelation and consequently
a control chart applied to the decorrelated data could be less
sensitive to the shi", and (ii) the use of spring length can
alleviate this “masking e#ect” of data decorrelation since the
spring length is o"en a small number and thus only a small
number of previous observations are involved in data decorre-
lation at each time. A recursive algorithm for data decorrelation
modi%ed from the one in You and Qiu (2019) is brie$y described
below.

Let Wn = (X′
n−bn

, X′
n−bn+1, . . . , X′

n)
′ be a long vector con-

sisting of Xn and all previous observations that it needs to be
decorrelated with. Then, its estimated IC covariance matrix is

!̂bn+1,bn+1(n) =




γ̂ n−bn−1(0) · · · γ̂ n−1(bn)

... . . . ...
[γ̂ n−1(bn)]′ . . . γ̂ n−1(0)





=:
(

!̂bn,bn(n) σ̂ bn,n
(σ̂ bn,n)′ γ̂ n−1(0)

)
,

where σ̂ bn,n = ([γ̂ n−1(bn)]′, . . . , [γ̂ n−1(1)]′)′ and {γ̂ i(s), 0 ≤
s ≤ bn, n − bn − 1 ≤ i ≤ n − 1} are estimates of {γ i(s), 0 ≤ s ≤
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Figure 1. Diagram of the proposed TSL-based online process monitoring scheme. The dotted rectangle highlights the TSL learning framework.

bn, n − bn − 1 ≤ i ≤ n − 1} de%ned in Equation (6). Here, the
IC covariance of Wn is estimated by the estimated covariance
coe!cients obtained at time n − 1 because it is unknown yet
whether the underlying process is IC at time n during the data
decorrelation at time n. If bn = 0, then we can de%ne the stan-
dardized observation at time n to be [γ̂ n−1(0)]−1/2(Xn−µ̂

(n−1)
0 )

and it does not need to be decorrelated with any previous obser-
vations, where µ̂

(n−1)
0 is de%ned in Equation (5). Otherwise,

based on the Cholesky decomposition of !̂bn+1,bn+1(n), it can
be checked that D̂−1/2

bn
(n)[Xn − µ̂

(n−1)
0 − (σ̂ bn,n)′!̂−1

bn,bn
(n)̂en−1]

would have the asymptotic identity covariance matrix and be
asymptotically uncorrelated with Xn−bn , Xn−bn+1, . . . , Xn−1,

where D̂bn(n) = γ̂ n−1(0) − (σ̂ bn,n)′!̂−1
bn,bn

(n)σ̂ bn,n and ên−1 =
[(Xn−bn −µ̂

(n−1)
0 )′, (Xn−bn+1−µ̂

(n−1)
0 )′, . . . , (Xn−1−µ̂

(n−1)
0 )′]′.

Then, the decorrelated and standardized observation at time n
can be de%ned to be

X∗
n =






[γ̂ n−1(0)]−1/2
(

Xn − µ̂
(n−1)
0

)
, when bn = 0,

D̂−1/2
bn

(n)
[

Xn − µ̂
(n−1)
0 − (σ̂ bn,n)′!̂−1

bn,bn
(n)̂en−1

]
,

when bn > 0.
(3)

In Equation (3), the inverse matrix !̂−1
bn,bn

(n) can be computed
recursively by the following formula: for 2 ≤ i ≤ bn,

!̂−1
i,i (n) =




!̂−1

i−1,i−1(n) + !̂−1
i−1,i−1(n)σ̂ i−1,nD̂−1

i−1(n)(σ̂ i−1,n)′!̂−1
i−1,i−1(n), −!̂−1

i−1,i−1(n)σ̂ i−1,nD̂−1
i−1(n)

−D̂−1
i−1(n)(σ̂ i−1,n)′!̂−1

i−1,i−1(n), D̂−1
i−1(n)



 .

A"er using the above data decorrelation algorithm, the result-
ing decorrelated process observations are denoted as {X∗

n =
(X∗

n1, X∗
n2, . . . , X∗

np)
′, n ≥ 1}. In cases when the serial data

correlation is stationary, !̂bn+1,bn+1(n) can be computed from
{γ̂ (n−1)(s), 0 ≤ s ≤ bn} de%ned in Equation (5).

Apply a control chart to the decorrelated data: First, note that
the transformed observation X∗

n in Equation (3), for each n, is a
linear combination of Xn and its previous bn observations. So,
the distribution of X∗

n would be closer to a normal distribution
when bn > 1, compared to the distribution of Xn, due to
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the central limit theorem. So, if we are certain the distribution
of the original observations {Xn} is close to normal, then we
can consider using a conventional multivariate control chart
for monitoring the decorrelated data. For instance, to use the
multivariate EWMA (MEWMA) chart by Lowry et al. (1992),
let us de%ne

En = λ(X∗
n − µ̂

(0)
0 ) + (1 − λ)En−1, for n ≥ 1, (4)

where E0 = 0, λ ∈ (0, 1] is a weighting parameter, and µ̂
(0)
0 is

the estimated IC mean obtained from the initial IC data. Then,
the chart gives a signal when

E′
n!̂

−1
En En > h,

where !̂En = [λ/(2 − λ)]!̂(0)
0 , !̂(0)

0 is the estimated IC covari-
ance matrix obtained from the initial IC data, and h > 0 is a
control limit. The self-starting version of the MEWMA chart
(4), denoted as MEWMA-SS, can be obtained by replacing µ̂

(0)
0

and !̂
(0)
0 in the above formulas by µ̂

(n−1)
0 and !̂

(n−1)
0 de%ned in

Equation (5), respectively.
In practice, the value of bn is usually small, as mentioned

earlier. Thus, the distribution of X∗
n could be substantially dif-

ferent from normal in cases when the distribution of the orig-
inal observation Xn is substantially di#erent from normal. In
such cases, we suggest using a nonparametric chart. In the
SPC literature, there are many nonparametric charts developed
(Qiu 2018), and most of them can be used here. In this article,
we demonstrate the proposed TSL-based process monitoring
approach using the nonparametric chart based on data catego-
rization that was proposed by Qiu (2008). Construction of this
chart is described in the supplementary %le. It is denoted as TSL-
S when the serial data correlation is assumed stationary, and
TSL-NS when the serial data correlation is allowed to be non-
stationary.

Update the IC parameter estimates: When a TSL-based con-
trol chart does not give a signal at time n, under the TSL learning
framework, the observation Xn should be combined with the
IC dataset and the estimates of the IC parameters µ0, !0 and
{γ n(s), 0 ≤ s ≤ bmax, n ≥ 1} should be updated using the
combined IC dataset. To reduce computation, it is critically
important to update the IC parameter estimates recursively
when it is possible. To this end, the following recursive formulas
can be derived when the serial data correlation is assumed
stationary: for n ≥ 1 and 0 ≤ s ≤ bmax,

µ̂
(n)
0 = 1

m0 + n Xn + m0 + n − 1
m0 + n µ̂

(n−1)
0 , (5)

γ̂ (n)(s) = 1
m0 + n − s

(
Xn − µ̂

(n)
0

) (
Xn−s − µ̂

(n)
0

)′

+m0 + n − s − 1
m0 + n − s γ̂ (n−1)(s).

In Equation (5), the quantities µ̂
(0)
0 and {γ̂ (0)(s), 0 ≤ s ≤ bmax}

are de%ned in Equation (1). Also, it is obvious that !̂
(n)
0 =

γ̂ (n)(0). A"er the IC parameter estimates are updated, we are
ready to monitor the process at the next time point n + 1, as

demonstrated in Figure 1. If the serial data correlation is non-
stationary, then {γ n(s), 0 ≤ s ≤ bmax, n ≥ 1} can be estimated
by

γ̂ n(s) =

n∑
i=n−w

(
Xi − µ̂

(n)
0

) (
Xi−s − µ̂

(n)
0

)′
K

(
(n − i)/g

)

n∑
i=n−w

K
(
(n − i)/g

) ,

for 0 ≤ s ≤ bmax, n ≥ 1, (6)

where w is a prespeci%ed window size, and K(·) and g are the
same as those in (2). Since γ̂ n(s) is computed from observations
with indices in a local neighborhood of n, instead of from all
previous observations, its computation should be manageable.
Because of this and the fact that its recursive computation can
only be accomplished asymptotically, which would lose some
numerical accuracy, a recursive formula to compute γ̂ n(s) is not
provided here and we suggest using Equation (6) instead.

2.3. Practical Guidelines on Parameter Selection

On selection of m0: Performance of a TSL-based control chart
depends on the initial IC data size m0. As shown in Table 1
in Section 3 and Table S.3 in the supplementary %le, when the
serial data correlation is stationary and the dimensionality p is
small (e.g., p ≤ 5), the IC performance of the charts TSL-S
and TSL-NS is reliable when m0 ≥ 400 since their ARL0 values
would be within 10% of the nominal ARL0 value in such cases.
If the serial data correlation is non-stationary or p is relatively
large, then m0 should be chosen larger to have a reliable IC
performance.

On selection of bmax: When constructing a TSL-based control
chart, the serial data correlation is assumed to vanish when
two observation times are at least bmax apart. In practice, bmax
is unknown. Based on our extensive numerical experience,
the performance of a TSL-based control chart could not be
improved much if bmax is chosen larger than 20, and its
performance would be negatively a#ected in certain cases
if bmax is chosen smaller than 10. So, we suggest choosing
bmax ∈ [10, 20]. In all numerical examples in Sections 3 and
4, bmax is chosen to be 20.

On selection of w: When the serial data correlation is non-
stationary, the parameters {γ n(s), 0 ≤ s ≤ bmax, n ≥ 1} need
to be estimated from previous observations whose observation
times are within a window of size w of the current observation
time n (cf., (6)). Based on our numerical experience, w can be
chosen to be w = a × bmax with a ∈ [4, 6]. In the related
numerical examples in Sections 3 and 4, a is chosen to be 5.

2.4. Some Discussions on Di"erent Machine Learning
Control Charts

From the above discussions, it can be seen that the IC process
characteristics to learn are well speci%ed in the proposed TSL-
based process monitoring scheme, which include the IC process
distribution F0(x) and the IC covariance matrices cov(Xi, Xi′),
for any x ∈ Rp and i, i′ ≥ 1. These quantities jointly describe
the IC data structure of the process under monitoring. Because
there are so many unknowns among them, it is still an open
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research problem how to sequentially estimate them properly
from the IC data. In this article, we present the TSL-based
process monitoring scheme in a simpli%ed case when F0(x) is
replaced by its mean µ0 and covariance matrix !0 and when
cov(Xi, Xi′) is reduced to the parameters {γ n(s), 0 ≤ s ≤
bmax, n ≥ 1}. Although this simpli%ed case can provide a
reasonable approximation to the IC data structure in some
applications, there are certainly some other applications that
it may not be able to handle properly. For instance, if the IC
distribution F0(x) is skewed, then its mean and covariance
matrix cannot describe the whole distribution well. There are
also some applications in which the serial data correlation could
be long-range (e.g., Altmann, Cristadoro, and Esposti 2012).
Therefore, much future research is needed to generalize the TSL-
based process monitoring scheme discussed in this article to
handle more applications.

As discussed in Section 1, there are two types of existing
control charts using machine learning algorithms. The %rst type
employs the supervised learning idea. Because there are usually
no OC data available before online process monitoring, some
methods in the %rst type use arti%cial data that are generated
from a prespeci%ed o#-target distribution (e.g., uniform), while
some others treat previous process observations within a local
window of the current observation time as the OC data. In
both cases, the arti%cial data and/or the observations within
a local window of the current observation time could be sub-
stantially di#erent from the actual OC data. Consequently, the
e#ectiveness of the decision rules generated from such subjec-
tively generated/assigned training data could be compromised.
Furthermore, the decision rules in these methods are usually
generated by certain supervised machine learning algorithms
(e.g., random forest), and their interpretation and statistical
properties are o"en di!cult to discuss. The second type of
existing machine learning control charts employs the OCC
idea. Their decision rules are obtained from the IC dataset by
estimating the spatial boundary of the IC process distribution
F0(x). Because there is o"en no prior information on the shape
or other related features of F0(x), these methods o"en use local
smoothing approaches to compute the boundary estimates (cf.,
Sun and Tsung 2003). Thus, the variability of the estimates
would be relatively large, especially in SPC applications that the
IC data sizes are usually quite small. Consequently, the related
control charts would not be reliable enough to use, which is
con%rmed in Section 3 by numerical examples. Because these
charts depend on the boundary of F0(x) only, they cannot detect
any distributional shi"s that minimally change the boundary
of F0(x). Such shi"s, however, could be important to detect
since they may change the mean and/or variance of each quality
characteristic under monitoring.

3. Simulation Studies

In this section, we investigate the numerical performance of
the TSL-based process monitoring charts MEWMA-SS, TSL-
S, and TSL-NS discussed in Section 2.2, in comparison with
four representative existing process monitoring methods that
are based on machine learning algorithms. The four existing
methods considered here are brie$y described below.

• The kernel distance based multivariate control chart sug-
gested by Sun and Tsung (2003), denoted as KC (representing
kernel-distance-based classi%cation): The chart KC is based
on an SVDD algorithm. It works roughly as follows. First,
the kernel distance (kd) from the center of a training dataset
can be computed for each process observation. The chart
then gives a signal when kd at the current time point exceeds
a control limit h, where h is determined from the training
dataset such that the Type I error probability is below a given
level α. The ARL0 value of the chart is de%ned to be 1/α, since
this method assumes that process observations at di#erent
time points are independent. In KC, Sun and Tsung (2003)
suggested using the Gaussian radical basis function (RBF)
as the kernel function, and the bandwidth used in RBF is
chosen such that the average of the Type I and Type II error
probabilities computed from the training data is minimized.

• The control chart suggested by Sukchotrat, Kim, and Tsung
(2010) that is based on the K-nearest-neighbor (KNN) data
description procedure, denoted as KNN: To construct the
chart KNN, the average distance between a given observation
and ρ = 30 nearest observations in the training dataset is
calculated, which is called K2-value of the given observation.
Then, the (1 − α)th percentile of the K2-values of all obser-
vations in the training dataset is used as the control limit
h. To reduce variability, Sukchotrat, Kim, and Tsung (2010)
suggested determining h by the following bootstrap proce-
dure: (i) a total of B = 1000 bootstrap samples are obtained
from the training dataset by the random sampling procedure
with replacement and each bootstrap sample has the same
size as the training dataset, (ii) the (1 − α)th percentile of
the K2-values can be computed from each bootstrap sample,
as described above, and (iii) h is chosen to be the mean of
the B such percentiles. Then, for online process monitoring,
the process is declared to be OC at a given time if the K2-
value of the related process observation exceeds the control
limit h. This method also assumes that process observations
at di#erent time points are independent. Thus, its ARL0 value
equals 1/α.

• The multivariate control chart using the arti%cial contrasts
approach and the RF classi%cation that was suggested by
Hwang, Runger, and Tuv (2007), denoted as RF: For a given
IC dataset, the same amount of arti%cial contrasts are gen-
erated and combined with the IC dataset to form a training
dataset. For individual quality characteristics Xj, their arti-
%cial contrasts are generated independently from uniform
distributions with the ranges same as those of Xj values in the
IC dataset, for j = 1, 2, . . . , p. A binary decision rule is then
generated by the RF algorithm from the training data so that
the Type I error probability is α. In the RF classi%cation, the
number of trees used is set to be 1000 and the number of ran-
dom variables selected for each tree is chosen to be √p, as did
in Hwang, Runger, and Tuv (2007). During online process
monitoring, the process status is determined by the decision
rule. Since this method assumes that process observations
at di#erent time points are independent, its ARL0 value also
equals 1/α.

• The process monitoring method using the RTC approach
that was suggested by Deng, Runger, and Tuv (2012), denoted
as RTC: The RTC method treats the process monitoring
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problem as a real-time classi%cation problem, in which pro-
cess observations in the IC dataset and those within a moving
window of the current time point form a training dataset,
with the former as IC observations and the latter as OC
observations. Then, a decision rule is generated from this
training dataset using the RF algorithm, and the process
status at the current time point is determined by this decision
rule. As discussed in Deng, Runger, and Tuv (2012), there
could be several possible charting statistics based on the
RF algorithm. As in their simulation studies, the estimated
out-of-bag correct classi%cation rate in the IC data is used
as the charting statistic in this article. By following their
suggestions, the window size of all moving windows is %xed
at 10, and the threshold value used in the decision rules is
determined from the IC dataset by a bootstrap procedure
with the bootstrap sample size of 1000 so that a given ARL0
value is reached.

In all simulation examples, the nominal ARL0 values of all
charts are %xed at 200. So, the signi%cance level α in the charts
KC, KNN and RF is chosen to be 0.005. If there is no further
speci%cation, then the procedure parameter k in the TSL-based
CUSUM charts TSL-S and TSL-NS (see the expression immedi-
ately below Expression (A.1) in the supplementary %le) is chosen
to be 0.01, the weighting parameter λ in the MEWMA-SS chart
is %xed at 0.05, the number of nearest observations ρ in KNN
is chosen to be 30 as suggested by Sukchotrat, Kim, and Tsung
(2010), and the moving window size in RTC is chosen to be 10
as suggested by Deng, Runger, and Tuv (2012).

Regarding the IC process distribution and the IC serial data
correlation, the following %ve cases when p = 5 are considered
%rst:

Case I: Process observations {Xn, n ≥ 1} are iid. with the IC
distribution N5(0, I5×5).

Case II: Process observations Xn = (Xn1, Xn2, Xn3, Xn4, Xn5)′

are generated as follows: Xn1 follows the AR(1) model
Xn1 = 0.1Xn−1,1+εn1, where X01 = 0 and {εn1} are iid
random errors with the N(0, 0.12) distribution; Xn2 is
generated by the model Xn2 = Xn1 + εn2, where {εn2}
are iid random errors with the N(0, 0.12) distribution;
Xn3 follows the AR(2) model Xn3 = 0.2Xn−1,3 +
0.1Xn−2,3 + εn3, where X03 = X13 = 0 and {εn3}
are iid random errors with the N(0, 0.12) distribution;
Xn4 is generated by the model Xn4 = Xn3 + εn4,
where {εn4} are iid random errors with the N(0, 0.12)
distribution; Xn5 is generated by the model Xn5 =
0.4Xn1 + 0.6Xn3 + εn5, where {εn5} are iid random
errors with the N(0, 0.12) distribution. In all models
discussed above, {εn1}, {εn2}, {εn3}, {εn4} and {εn5} are
independent.

Case III: Process observations Xn = (Xn1, Xn2, Xn3, Xn4, Xn5)′

are generated in the same way as that in Case II, except
that {εn1}, {εn2}, {εn3}, {εn4} and {εn5} are iid random
errors whose common distribution is the same as that
of 0.1(ξ −3)/

√
6, where ξ is a random variable having

the distribution of χ2
3 .

Case IV: Process observations Xn = (Xn1, Xn2, Xn3, Xn4, Xn5)′

are generated as follows: for each j, Xnj = 0.5ξnj +
εnj, where {εnj} are iid. random errors with the N(0, 1)

distribution, and {ξnj} is a two-state Markov process
with the initial state being 0 and the transition matrix
between the two states {0, 1} being

(
0.75 0.25
0.25 0.75

)
.

Case V: Process observations Xn = (Xn1, Xn2, Xn3, Xn4, Xn5)′

are generated as follows: Xn1 follows the AR(1) model
Xn1 = 0.01

√
nXn−1,1 + εn1, where X01 = 0 and {εn1}

are iid random errors with the N(0, 0.12) distribution;
Xn2 is generated by the model Xn2 = Xn1 + εn2,
where {εn2} are iid random errors with the distribution
of 0.1(ξ − 3)/

√
6 and ξ is a random variable having

the distribution of χ2
3 ; Xn3 follows the AR(1) model

Xn3 = 0.1 log(n)Xn−1,3+εn3, where X03 = 0 and {εn3}
are iid random errors with the N(0, 0.12) distribution;
Xn4 is generated by the model Xn4 = Xn3 + εn4,
where {εn4} are iid random errors with the distribution
of 0.1(ξ − 3)/

√
6 and ξ is a random variable having

the distribution of χ2
3 ; and Xn5 is generated by the

model Xn5 = 0.1
√

nεn5, where {εn5} are iid random
errors with the N(0, 0.12) distribution. In all models
discussed above, {εn1}, {εn2}, {εn3}, {εn4} and {εn5} are
independent.

In Cases I–V described above, each quality characteristic is
standardized to have mean 0 and variance 1. Obviously, Case I is
the conventional case considered in the SPC literature with iid
process observations and the standard normal IC process distri-
bution. Cases II and III consider correlated process observations
across di#erent quality characteristics and di#erent observa-
tion times with stationary serial data correlation. The corre-
lation among di#erent quality characteristics is present only
for pairs (Xn1, Xn2), (Xn3, Xn4), (Xn1, Xn5), and (Xn3, Xn5) in
these two cases. The error distribution is normal in Case II
and skewed in Case III. In Case IV, each component of {ξn =
(ξn1, ξn2, ξn3, ξn4, ξn5)′, n ≥ 1} is a binary Markov process. Its
observations are serially correlated because the transition prob-
ability from a given state to the same state is 0.75, which is larger
than the transition probability from a given state to the other
state. Such a serial data correlation is stationary, but cannot
be described by a conventional time series model. The process
observations {Xn} are generated by adding some random noise
to {ξn}, and thus they are also serially correlated. In Case V, the
serial data correlation depends on observation times, and thus
is non-stationary.

Evaluation of the IC performance: We %rst evaluate the IC per-
formance of the related control charts. In the simulation study,
the IC sample size m0 can change among {200, 300, 400, 500,
1000, 2000}. For the MEWMA-SS chart, its control limit is deter-
mined by Monte Carlo simulations based on the assumed IC
normal distribution. For the TSL-S and TSL-NS charts, their
control limits are determined by the bisection searching algo-
rithm described in Section S.1 of the supplementary %le. The
control limits of the four competing methods KC, KNN, RF,
and RTC are determined as discussed in their brief descrip-
tions given above. For each method, a"er an IC dataset of size
m0 is generated, some IC parameters are estimated from the
IC dataset. Then, a run length (RL) value is recorded from a
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simulation of online process monitoring of 2000 IC process
observations. The simulation is then repeated for 1000 times,
and the conditional ARL0 value conditional on the IC data is
estimated as the average of the 1000 RL values. This entire sim-
ulation study, from generation of the IC dataset to computation
of the conditional ARL0 value, is then repeated for 100 times.
The average of the 100 conditional ARL0 values obtained from
these 100 replicated simulations is then used as the %nal estimate
of the true ARL0 value of the related control chart, and the
standard error of the estimated ARL0 value can also be calcu-
lated. To make the comparison fair, process observations are
decorrelated before each method is used for process monitoring.
The decorrelation procedure discussed in Section 2.2 under the
stationary assumption is used for all control charts, except TSL-
NS for which non-stationary serial data correlation is allowed
in the decorrelation procedure (cf., Equations (2) and (6)). The
estimated ARL0 values in various di#erent cases considered
are shown in Figure 2 here, and presented in Table S.1 in the
supplementary %le as well.

From Figure 2, it can be seen the following results. First,
the IC performance of the charts TSL-S and TSL-NS is quite
reliable in Cases I-IV when m0 ≥ 400 since their estimated
ARL0 values are within 10% of the nominal ARL0 value of 200 in
all cases considered, and TSL-S performs a little better in most of
these cases. For Case V when the serial data correlation is non-
stationary, TSL-NS is still reliable when m0 ≥ 400, but TSL-S
is not that reliable in such cases since it is constructed based on
the stationarity assumption. Second, in Cases I–IV, the charts
KNN, RF, and RTC have a reasonably reliable performance
when m0 ≥ 1000, and the chart MEWMA-SS is quite reliable
when m0 ≥ 500. Third, all the charts KNN, RF, RTC, and
MEWMA-SS do not have a reliable IC performance in Case V
when the actual serial data correlation is non-stationary. Fourth,
the IC performance of KC is poor in all cases considered here.
From Table S.1 in the supplementary %le, it can be seen that
values of the standard deviation of ARL0, denoted as SDARL0,
of the charts TSL-S and TSL-NS are generally smaller than or
comparable to those of the charts KNN, RF, and RTC, except in
cases when the estimated ARL0 values of the latter three charts
are well below the nominal ARL0 value of 200 (e.g., in cases
when m0 ≤ 300). The SDARL0 values of KC are small in all cases
due to its small estimated ARL0 values. The SDARL0 values
of MEWMA-SS are comparable to those of TSL-S and TSL-
NS, except in Case V when its estimated ARL0 values are too
small. Generally speaking, control charts based on conventional
machine leaning techniques require a large training data to have
a reasonably reliable classi%cation rule since the speci%c process
characteristics to learn are usually not well speci%ed in advance.
This is true especially when the process observations have com-
plicated data structure. This explains why the four competing
machine learning charts KC, KNN, RF and RTC do not perform
well in some cases considered here. As a comparison, the TSL-
based monitoring charts MEWMA-SS, TSL-S and TSL-NS have
the process characteristics to learn well speci%ed in advance so
that their learning process could be more e!cient. Furthermore,
the IC dataset keeps expanding in these TSL-based charts if the
process is declared to be IC during online process monitoring,
making the learned process characteristics more accurate in
estimating the true IC process characteristics and the related

charts more e#ective. The TSL-based charts MEWMA-SS and
TSL-S do not perform well in some cases because their model
assumptions (e.g., normality in MEWMA-SS and stationarity
in TSL-S) are violated in such cases. So, we suggest using TSL-
NS in cases when these assumptions cannot be con%rmed. The
estimated ARL0 and SDARL0 values of the charts KC, KNN,
RF, RTC, and MEWMA when they are applied to the original
process observations without data decorrelation in Cases I-V are
also computed, and presented in Table S.2 of the supplementary
%le. It can be seen from the table that their IC performance is
generally unreliable in cases when serial data correlation exists
but data de-correlation is not implemented properly in advance.

The results in Figure 2 are for cases when the number of
quality characteristics p is 5. Intuitively, when p is larger, the
necessary IC sample size m0 should be larger as well to have
a reliable IC performance of a TSL-based control chart. To
con%rm this, we %rst consider an extension of Case IV to a p-
dimensional case where observations of each quality character-
istic are generated in the same way as that in Case IV. Because
the serial data correlation is stationary in such a case, we focus
on the IC performance of the chart TSL-S. When p changes
among 1, 3, 5, 7, and 10 and other setups are the same as those
in Figure 2, the estimated ARL0 and SDARL0 values of TSL-
S are presented in Table 1. From the table, it can be seen that
the necessary IC sample size m0 indeed should be larger to
have a reliable IC performance of TSL-S when p is larger. In a
case extended from Case V when the serial data correlation is
nonstationary, the estimated ARL0 and SDARL0 values of TSL-
NS when p changes among 1, 3, 5, 7, and 10 are presented in
Table S.3 of the supplementary %le. A similar conclusion can be
made from that table.

Evaluation of the OC performance: Next, we evaluate the OC
performance of the related charts in cases when m0 = 500,
all quality characteristics have a same shi" at the beginning of
online process monitoring with the size varying among ±0.25,
±0.5, ±0.75 or ±1.0, and other setups are the same as those
in Figure 2. To make the comparison among di#erent charts
meaningful, their control limits have been adjusted properly
so that their actual ARL0 values all equal the nominal level of
200. First, we consider cases when the related parameters of the
charts are chosen to be the same as those in the example of Fig-
ure 2. The results of the computed ARL1 values of the %ve charts
in Cases I–V are presented in Figure S.1 of the supplementary
%le. From the %gure, we can have the following conclusions. (i)
The chart TSL-S performs the best or close to the best among
all %ve charts in Cases I–IV when the serial data correlation is
stationary, especially when the shi" size is relatively small. (ii)
The chart TSL-NS performs the best in most scenarios in Case

Table 1. Estimated ARL0 values and SDARL0 values (in parentheses) of TSL-S in a
case extended from Case IV when the nominal ARL0 value is !xed at 200 and p
changes among 1, 3, 5, 7, and 10.

p m0 = 200 300 400 500 1000 2000

1 190 (46.6) 193 (44.8) 195 (42.7) 196 (32.7) 198 (21.9) 197 (14.9)
3 183 (45.4) 192 (36.5) 191 (27.8) 195 (23.9) 198 (18.1) 198 (12.2)
5 158 (48.0) 189 (30.5) 193 (28.5) 195 (28.2) 199 (23.7) 200 (20.0)
7 125 (30.6) 144 (37.5) 153 (39.8) 176 (40.1) 194 (32.9) 196 (30.2)
10 93 (32.1) 110 (34.4) 126 (40.5) 147 (48.7) 160 (54.2) 181 (50.3)
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Figure 2. Estimated ARL0 values of seven control charts applied to the decorrelated data when their nominal ARL0 values are !xed at 200, and the IC sample size m0
changes among 200, 300, 400, 500, 1000, and 2000.

V when the serial data correlation is non-stationary, and its per-
formance is reasonable in Cases I–IV, although it is less e#ective
than the chart TSL-S in such cases. (iii) The chart MEWMA-
SS performs reasonably well in Cases I, II and IV when the
normality assumption is valid, and it is less e#ective in Cases III
and V when the normality assumption is invalid, compared to
TSL-S in Case III and TSL-NS in Case V. (iv) The charts KC,

KNN and RTC have a reasonably good performance in cases
when the shi" size is relatively large (e.g., ±0.75 and ±1.0), but
the chart RF does not have a satisfactory performance in all cases
considered. (v) Among the four alternative charts KC, KNN,
RF, and RTC, it seems that RTC has the best OC performance.
The above conclusions (i)–(iii) are intuitively reasonable. The
reason why the alternative charts KC, KNN, and RTC have a
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reasonably good performance when the shi" size is relatively
large can be explained intuitively as follows. Remember that the
decision rules of the charts KC and KNN are determined from
the IC dataset obtained before online process monitoring and
then the decision at a given time point during online process
monitoring is made based on the observed data at that time
point only. So, these two charts are basically Shewhart charts.
The RTC chart is di#erent from them in that it determines its
decision rule based on the IC dataset and the observed data in
a moving window of the current time point. Its decision at the
current time point is then made based on the observed data at
the current time point. Thus, it is also a Shewhart chart although
its decision rule is determined adaptively during online process
monitoring. Generally speaking, Shewhart charts are e#ective
in detecting large shi"s (Qiu 2014, chap. 3), which is con%rmed
in this example. Also, by comparing the performance of the
charts RF and RTC in this example, we can see that the adaptive
way to determine the decision rule in RTC did improve the
performance of an arti%cial contrast chart like RF. Some results
when the charts KC, KNN, RTC and MEWMA are applied to the
original process observations without considering data decorre-
lation are presented in Figures S.2 and S.3 of the supplementary
%le. Similar conclusions to those from Figure S.1 can be made
from these results.

In the example of Figure S.1 in the supplementary %le, the
related parameters in the seven charts are chosen as in the exam-
ple of Figure 2. In such cases, the OC performance of the charts
may not be comparable, as pointed out in the literature (e.g.,
Qiu 2018). To avoid this limitation, in the following example,
we compare the optimal OC performance of all seven charts
by choosing the parameters of each chart such that its ARL1
value reaches the minimum for detecting a given shi". All other
setups are kept to be the same as those in the previous example.
The optimal ARL1 values of the seven control charts in cases
considered in Figure S.1 are shown in Figure 3. From the %gure,
it can be seen that similar conclusions to those in the previous
example can be made here regarding the OC performance of
the seven charts. Some results when the charts KC, KNN, RTC
and MEWMA are applied to the original process observations
without considering data de-correlation are presented in Figures
S.4 and S.5 of the supplementary %le. Similar conclusions to
those from Figure 3 can be made from these %gures.

To study the impact of the initial IC data size m0, in the setup
of Figure S.1, the calculated ARL1 values of the charts TSL-S and
TSL-NS when m0 changes among 200, 300, 400, 500, 1000, and
2000 are presented in Figures S.6 and S.7 of the supplementary
%le, respectively. From the %gures, it can be seen that the OC
performance of TSL-S and TSL-NS is generally better when m0
is larger, and their OC performance is quite stable when m0 ≥
500 in all cases considered.

4. An Application

We demonstrate the application of the seven charts KC, KNN,
RF, RTC, MEWMA-SS, TSL-S, and TSL-NS considered in the
previous section by using a dataset about a semiconductor
manufacturing process that is maintained by the UC Irvine
Machine Learning Repository (http://archive.ics.uci.edu/ml/

datasets/SECOM). This dataset contains observations of many
extracted quality characteristics of the semiconductor products
sampled from the manufacturing process, and has become a
standard dataset for testing various multivariate control charts
in the SPC literature (e.g., Chen, Zi, and Zou 2016; Li et al.
2020). For a general discussion about statistical monitoring of
semiconductor manufacturing processes, see Yashchin (2018).
Here, we choose %ve quality characteristics to test the related
charts. The original data of these %ve quality features are shown
in Figure S.5 in the supplementary %le. From the plots in the
%gure, it can be seen that the %rst 500 observations of the
data are quite stable over time. Thus, they are used as the
IC data. For these IC data, we %rst check the signi%cance
of the autocorrelation for all quality characteristics using
the Durbin–Watson test. The p-values of this test for the
%ve quality characteristics are 1.789 × 10−3, 4.727 × 10−1,
4.760 × 10−4, 1.412 × 10−4, and 9.744 × 10−2. So, there is
signi%cant autocorrelation in the time series of the %rst, third
and fourth quality characteristics. To check the stationarity of
the autocorrelation, the augmented Dickey–Fuller (ADF) test is
used and the p-values of this test for %ve quality characteristics
are all < 0.01, implying that the stationary assumption is valid
in this example. To check the correlation among the %ve quality
characteristics in the IC data, the following sample correlation
coe!cient matrix is %rst computed:





1.000 −0.046 0.106 0.054 0.012
−0.046 1.000 −0.131 −0.036 −0.104
0.106 −0.131 1.000 0.413 −0.059
0.054 −0.036 0.413 1.000 0.393
0.012 −0.104 −0.059 0.393 1.000




.

Then, the Pearson’s correlation test is used to check pairwise
correlation among the %ve quality characteristics, and the fol-
lowing pairs are found to be signi%cantly correlated (X1, X3),
(X2, X3), (X2, X5), (X3, X4), and (X4, X5). The corresponding p-
values are respectively 0.018, 0.003, 0.020, 5.259 × 10−22, and
7.088 × 10−20. Therefore, based on the above data analysis, the
IC data have signi%cant stationary serial data correlation and
signi%cant correlation among the %ve quality characteristics.

We then decorrelate the data using the data decorrelation
procedure for stationary correlated data discussed in Sec-
tion 2.2, and the decorrelated data are shown in Figure S.9 of the
supplementary %le. A"er the data decorrelation, the p-values of
the Durbin-Watson test for checking the autocorrelation of the
%ve quality characteristics in the decorrelated IC data are 0.444,
0.495, 0.489, 0.489, and 0.483, respectively. Thus, there is no
signi%cant evidence of autocorrelation in the decorrelated IC
data. All pairwise Pearson’s correlation coe!cients computed
from the decorrelated IC data are < 0.0015, implying the
pairwise correlation among the %ve quality characteristics
has been mostly removed as well. To check the normality
assumption of the decorrelated data, the Shapiro test is used, and
its p-values for the %ve quality characteristics are 4.991 × 10−9,
3.573 × 10−17, 3.481 × 10−9, 0.012, and 1.113 × 10−8,
respectively. Thus, the normality assumption is signi%cantly
violated for all %ve quality characteristics.

Next, we apply the seven charts KC, KNN, RF, RTC,
MEWMA-SS, TSL-S, and TSL-NS to the decorrelated data for
online process monitoring, starting from the 501st observation.

http://archive.ics.uci.edu%20/ml/datasets/SECOM
http://archive.ics.uci.edu%20/ml/datasets/SECOM


498 P. QIU AND X. XIE

Figure 3. Optimal ARL1 values of the seven control charts when their nominal ARL0 values are !xed at 200, p = 5, m0 = 500, all quality characteristics have the same
shift, and the shift size changes among ±0.25, ±0.5, ±0.75, and ±1.0.

The control limits of these charts are computed as in Section 3.
The %ve charts are shown in Figure 4. From the charts, it can
be seen that the %rst signals of the charts KC, KNN, RF, RTC,
MEWMA-SS, TSL-S, and TSL-NS are at the time points 537,
534, 543, 529, 523, 521, and 532, respectively. Thus, the chart
TSL-S gives the earliest signal in this example. To verify the

detected shi", a multivariate change-point detection procedure
(cf., Qiu 2014, sec. 7.5) is applied to the decorrelated Phase II
data with the observation times in the range [501,600], and
the detected change-point is 517. Then, the Hotelling’s T2 test
to compare the multivariate means of the two groups of data
with the observation times in [501,516] and [517,600] gives
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Figure 4. Control charts KC, KNN, RF, RTC, MEWMA-SS, TSL-S, and TSL-NS for monitoring the decorrelated process observations in the semiconductor manufacturing
example.
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the p-value of 4.426 × 10−3. Thus, the multivariate process
mean has a signi%cant shi" at time 517. To identify the speci%c
quality characteristics that have mean shi"s at time 517, the t-
test to compare the means of individual quality characteristics in
the two groups of data with the observation times in [501,516]
and [517,600] gives the p-values of 1.581 × 10−3, 0.168, 0.022,
0.726, and 0.092, respectively, for the %ve quality characteristics.
Thus, it seems that the %rst and third quality characteristics have
signi%cant mean shi"s and the %"h quality characteristic has a
marginally signi%cant mean shi", which is quite consistent with
the plots in Figure S.9 of the supplementary %le.

From Figure S.9 of the supplementary %le, there seems an
obvious outlier in X∗

2 at time 299 and another outlier in X∗
5

at time 169. Because the number of outliers is small relative
to the IC sample size, we expect that they would not have a
substantial impact on the results. To con%rm this, we re-run the
above analyses, a"er the observations at times 169 and 299 are
removed from the IC data. Indeed, the results are not changed
much, and the %rst signals of the charts KC, KNN, RF, RTC,
MEWMA-SS, TSL-S and TSL-NS are at the time points 537, 534,
531, 531, 523, 521, and 532, respectively, in such a case.

5. Concluding Remarks

In recent years, some machine leaning methods have been sug-
gested for process monitoring and control in the SPC liter-
ature, using arti%cial contrast, real-time contrast, one-class-
classi%cation, and some other ideas. In the SPC research and
practice, certain IC parameters are routinely estimated from
an IC dataset before online process monitoring. To make the
estimates more accurate and accommodate situations when the
IC data size is relatively small, self-starting charts have become
a popular choice for online process monitoring. Based on that
idea, we propose the new learning framework TSL in this article,
in which process characteristics to learn from the observed
data are well speci%ed in advance. Online process monitoring
based on TSL consists of several steps that are demonstrated
in Figure 1, which can accommodate serial data correlation
and nonparametric IC process distribution. It has been shown
numerically that the TSL-based control charts are more reli-
able and e#ective in various cases, compared to some existing
methods based on machine learning algorithms. In the current
article, the TSL-based online process monitoring schemes are
demonstrated for monitoring a multivariate process when the
serial data correlation is short-range and the IC process distri-
bution can be described well by its mean and covariance matrix.
Although these assumptions are already quite $exible and can
provide a reasonable approximation to some SPC applications,
some real applications could be excluded by them. So, future
research is needed to extend the TSL-based online process mon-
itoring schemes discussed in this article to certain more general
scenarios. In addition, from Table 1 in Section 3 and Table S.3 in
the supplementary %le, when the number of quality characteris-
tics p is larger, the required IC data size m0 should be larger to
have a reliable TSL-based online process monitoring. In some
applications, however, a large IC dataset may not be available.
One possible solution is to include a dimension reduction or
variable selection procedure in the proposed TSL framework

to reduce the dimensionality or the number of IC parameters
that need to be estimated from the IC data. This issue will be
addressed in our future research.

Supplementary Materials

ComputerCodesAndData.zip: This zip %le contains Fortran source codes of
our proposed method and the real data used in the article.
supplement.pdf: This supplementary %le contains (i) a description of the
nonparametric CUSUM chart by Qiu (2008), and (ii) some extra numerical
results.

Acknowledgments

The authors thank the editor, the associate editor, and four referees for their
constructive comments and suggestions, which improved the quality of the
article greatly. This research is supported in part by an NSF grant.

References

Aggarwal, C. C. (2018), Neural Networks and Deep Learning, New York:
Springer. [487]

Altmann, E. G., Cristadoro, G., and Esposti, M. D. (2012), “On the Origin of
Long-Range Correlations in Texts,” Proceedings of the National Academy
of Sciences of the USA, 109, 11582–11587. [493]

Capizzi, G., and Masarotto, G. (2008), “Practical Design of Generalized
Likelihood Ratio Control Charts for Autocorrelated Data,” Technomet-
rics, 50, 357–370. [487]

Capizzi, G., and Masarotto, G. (2013), “Phase I Distribution-Free Analysis
of Univariate Data,” Journal of Quality Technology, 45, 273–284. [489]

Chakraborti, S., and Graham, M. A. (2019), Nonparametric Statistical Pro-
cess Control, New York: Wiley. [487]

Chatterjee, S., and Qiu, P. (2009), “Distribution-Free Cumulative Sum Con-
trol Charts Using Bootstrap-Based Control Limits,” Annals of Applied
Statistics, 3, 349–369. [490]

Chen, N., Zi, X., and Zou, C. (2016), “A Distribution-Free Multivariate
Control Chart,” Technometrics, 58, 448–459. [497]

Cressie, N. (1990), “The Origins of Kriging”, Mathematical Geology, 22,
239–252. [490]

Crosier, R B. (1998), “Multivariate Generalizations of Cumulative Sum
Quality-Control Schemes,” Technometrics, 30, 291–303. [487]

Deng, H., Runger, G., and Tuv, E. (2012), “System Monitoring With Real-
Time Contrasts,” Journal of Quality Technology, 44, 9–27. [488,493,494]

Epanechnikov, V. A. (1969), “Non-Parametric Estimation of a Multivariate
Probability Density,” Theory of Probability and Its Applications, 14, 153–
158. [490]

Hastie, T., Tibshirani, R., and Friedman, J. (2001), The Elements of Statistical
Learning – Data Mining, Inference, and Prediction, Berlin: Springer-
Verlag. [487]

Hawkins, D. M. (1987), “Self-Starting Cusums for Location and Scale,” The
Statistician, 36, 299–315. [488]

Hawkins, D. M., and Maboudou-Tchao, E. M. (2007), “Self-Starting Mul-
tivariate Exponentially Weighted Moving Average Control Charting,”
Technometrics, 49, 199–209. [488]

Hawkins, D. M., and Olwell, D. H. (1998), Cumulative Sum Charts and
Charting for Quality Improvement, New York: Springer. [487]

Hawkins, D. M., Qiu, P., and Kang, C. W. (2003), “The Changepoint Model
for Statistical Process Control,” Journal of Quality Technology, 35, 355–
366. [487]

He, S., Jiang, W., and Deng, H. (2018), “A Distance-Based Control Chart
for Monitoring Multivariate Processes Using Support Vector Machines,”
Annals of Operations Research, 263, 191–207. [488]

Hu, J., Runger, G., and Tuv, E. (2007), “Tuned Arti%cial Contrasts to Detect
Signals,” International Journal of Production Research, 45, 5527–5534.
[488]

Hwang, W., Runger, G., and Tuv, E. (2007), “Multivariate Statistical Pro-
cess Control With Arti%cial Contrasts,” IIE Transactions, 2, 659–669.
[488,493]



TECHNOMETRICS 501

Jones-Farmer, L. A., Woodall W. H., Steiner, S. H., and Champ, C. W.
(2014), “An Overview of Phase I Analysis for Process Improvement and
Monitoring,” Journal of Quality Technology, 46, 265–280. [488,489]

Keefe, M. J., Woodall, W. H., and Jones-Farmer, L. A. (2015), “The Condi-
tional In-Control Performance of Self-Starting Control Charts,” Quality
Engineering, 27, 488–499. [488]

Li, F., Runger, G. C., and Tuv, E. (2006), “Supervised Learning for Change-
Point Detection,” International Journal of Production Research, 44, 2853–
2868. [488]

Li, W., Xiang, D., Tsung, F., and Pu, X. (2020), “A Diagnostic Procedure for
High-Dimensional Data Streams Via Missed Discovery Rate Control,”
Technometrics, 62, 84–100. [497]

Lowry, C. A., Woodall, W. H., Champ, C. W., and Rigdon, S. E. (1992),
“Multivariate Exponentially Weighted Moving Average Control Chart,”
Technometrics, 34, 46–53. [487,492]

Megahed, F.M., and Jones-Farmer, L.A. (2015), “Statistical Perspectives on
‘Big Data’,” In Frontiers in Statistical Quality Control (Vol. 11), eds. S.
Knoth and W. Schmid, Cham: Springer, 29–47. [488]

Montgomery, D. C. (2012), Introduction to Statistical Quality Control, New
York: Wiley. [487]

Prajapati, D. R., and Singh, S. (2012), “Control Charts for Monitoring
the Autocorrelated Process Parameters: A Literature Review,” Interna-
tional Journal of Productivity and Quality Management, 10, 207–249.
[487]

Qiu, P. (2008), “Distribution-Free Multivariate Process Control Based on
Log-Linear Modeling,” IIE Transactions, 40, 664–677. [492,500]

(2014), Introduction to Statistical Process Control, Boca Raton, FL:
Chapman Hall/CRC. [487,488,489,497,498]

(2018), “Some Perspectives on Nonparametric Statistical Process
Control,” Journal of Quality Technology, 50, 49–65. [487,492,497]

(2020), “Big Data? Statistical Process Control Can Help!” The
American Statistician, 74, 329–344. [487]

Reis, M.S., and Gins, G. (2017), “Industrial Process Monitoring in the Big
Data/Industry 4.0 Era: From Detection, to Diagnosis, to Prognosis,”
Processes, 5, 35. [487]

Sall, J. (2018), “Scaling-up Process Characterization,” Quality Engineering,
30, 62–78. [489]

Sukchotrat, T., Kim, S. B., and Tsung, F. (2010), “One-Class Classi%cation-
Based Control Charts for Multivariate Process Monitoring,” IIE Trans-
actions, 42, 107–120. [488,493,494]

Sun, R., and Tsung, F. (2003), “A Kernel-Distance-Based Multivariate Con-
trol Chart Using Support Vector Methods,” International Journal of
Production Research, 41, 2975–2989. [488,493]

Tax, D. M., and Duin, R. P. W. (2004), “Support Vector Data Description,”
Machine Learning, 54, 45–66. [488]

Tuv, E., and Runger, G. (2003), “Learning Patterns Through Arti%cial Con-
trasts With Application to Process Control,” Transactions on Information
and Communications Technologies, 29, 63–72. [488]

Weese, M., Martinez, W., Megahed, F. M., and Jones-Farmer, L. A.
(2016), “Statistical Learning Methods Applied to Process Monitoring:
An Overview and Perspective,” Journal of Quality Technology, 48, 4–24.
[488]

Xue, L., and Qiu, P. (2020), “A Nonparametric CUSUM Chart for Mon-
itoring Multivariate Serially Correlated Processes,” Journal of Quality
Technology, DOI: 10.1080/00224065.2020.1778430. [487]

Yang, K., and Qiu, P. (2020), “Online Sequential Monitoring of Spatio-
Temporal Disease Incidence Rates,” IISE Transactions, 52, 1218–1233.
[487]

Yashchin, E. (2018), “Statistical Monitoring of Multi-Stage Processes,” in
Frontiers in Statistical Quality Control, eds. S. Knoth and W. Schmid, Vol.
12, 185–209, Berlin: Springer. [497]

You, L., and Qiu, P. (2019), “Fast Computing for Dynamic Screening
Systems When Analyzing Correlated Data,” Journal of Statistical Com-
putation and Simulation, 89, 379–394. [490]

Zhang, C., Tsung, F., and Zou, C. (2015), “A General Framework for
Monitoring Complex Processes With Both In-Control and Out-of-
Control Information,” Computers & Industrial Engineering, 85, 157–168.
[488]

Zou, C., Zhou, C., and Wang, Z. (2007), “A Self-Starting Control Chart for
Linear Pro%les,” Journal of Quality Technology, 39, 364–375. [488]


	Abstract
	1.  Introduction
	2.  Process Monitoring by Transparent Sequential Learning
	2.1.  Specific Process Characteristics to Learn and the TSL Framework
	2.2.  TSL-Based Online Process Monitoring
	2.3.  Practical Guidelines on Parameter Selection
	2.4.  Some Discussions on Different Machine Learning Control Charts

	3.  Simulation Studies
	4.  An Application
	5.  Concluding Remarks
	Supplementary Materials
	Acknowledgments
	References


