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Abstract Some control charts based on machine learning approaches have been
developed recently in the statistical process control (SPC) literature. These charts are
usually designed formonitoring processes with independent observations at different
observation times. In practice, however, serial data correlation almost always exists
in the observed data of a temporal process. It has been well demonstrated in the
SPC literature that control charts designed for monitoring independent data would
not be reliable to use in applications with serially correlated data. In this chapter,
we suggest using certain existing machine learning control charts together with a
recursive data de-correlation procedure. It is shown that the performance of these
charts can be substantially improved for monitoring serially correlated processes
after data de-correlation.

1 Introduction

In recent years, machine learning approaches have attracted much attention in dif-
ferent research areas, including statistical process control (SPC) (e.g., [1, 4, 8, 11],
[12]). Some control charts based on different machine learning algorithms have been
developed in the SPC literature. For instance, the k-nearest neighbors (KNN), ran-
dom forest (RF) and support vector machines (SVM) have been used in developing
SPC control charts. Most of these existing machine learning control charts are based
on the assumption that process observations at different observation times are inde-
pendent of each other. In practice, however, serial data correlation almost always
exists in a time series data. It has been well demonstrated in the SPC literature that
control charts designed for monitoring independent data would not be reliable to
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use when serial data correlation exists (e.g. [3, 15–17, 20, 22, 23, 28, 30]). Thus,
it’s necessary to improve these machine learning control charts by overcoming that
limitation. This chapter aims to address this important issue by suggesting to apply
a recursive data de-correlation procedure to the observed data before an existing
machine learning control chart is used.

In the SPC literature, there has been some existing discussion about process moni-
toring of serially correlated data (e.g., [2, 7, 19, 20]).Many such existingmethods are
based on parametric time series modeling of the observed process data and monitor-
ing of the resulting residuals. For instance, [16] proposed an exponentially weighted
moving average (EWMA) chart for monitoring correlated data by assuming the in-
control (IC) process observations to follow an ARMA model. In practice, however,
the assumed parametric time series models may not be valid, and consequently these
control charts may be unreliable to use (e.g., [17]). Recently, [22] suggested a more
flexible data de-correlation method without using a parametric time series model
for univariate cases. It only requires the serial data correlation to be stationary and
short-range (i.e., the correlation between two observations become weaker when the
observation times get farther away). A multivariate extension of that method was
discussed in [30]. Numerical studies show that such sequential data de-correlation
approaches perform well in different cases. In this chapter, we suggest improving
some existing machine learning control charts by applying such a data de-correlation
procedure to the observed process observations in advance. The modified machine
learning control charts can handle cases with multiple numerical quality variables,
and the quality variables could be continuous numerical or discrete. Numerical stud-
ies show that the performance of these modified machine learning control charts is
substantially better than their original versions for monitoring processes with serially
correlated data in various different cases.

The remaining parts of this chapter are organized as follows. In Sect. 2, the pro-
posed modification for some existing machine learning control charts are described
in detail. Numerical studies for evaluating their performance are presented in Sect. 3.
A real-data example to demonstrate the application of the modified control charts is
discussed in Sect. 4. Finally, some remarks conclude the article in Sect. 5.

2 Improve Some Machine Learning Control Charts for
Monitoring Serially Correlated Data

This section is organized in three parts. In Subsect. 2.1, some representative existing
machine learning control charts are briefly described. In Subsect. 2.2, a recursive
data de-correlation procedure for the observed sequential data is introduced in detail.
Then, the modified machine learning control charts, in which the recursive data de-
correlation procedure is applied to the observed data before the original machine
learning control charts, are discussed in Subsect. 2.3.
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2.1 Description of Some Representative Machine Learning
Control Charts

Classification is one of themajor purposes of supervisedmachine learning, andmany
machine learning algorithms like the artificial neural networks, RF and SVM have
demonstrated a good performance in accurately classifying input data after learning
the data structure from a large training data. Since an SPC problem can be regarded
as a binary class classification problem, in which each process observation needs
to be classified into either the IC or the out-of-control (OC) status during phase
II process monitoring, several machine learning algorithms making use of both IC
and OC historical data have been employed for process monitoring. For instance,
[31] proposed an EWMA control chart based on the probabilistic outputs of a SVM
classifier that needs to be built by using both IC and OC historical data. Several
other classifiers like the KNN and linear discriminant analysis were also proposed
for process monitoring (e.g., [18]; [24]). In many SPC applications, however, few
OC process observations would be available in advance. For instance, a production
process is often properly adjusted during the Phase I SPC, and a set of IC data is
routinely collected afterwards for estimating the IC process distribution or some of its
parameters ([21], Chap.1). Thus, for such applications, an IC data is usually available
before the Phase II SPC, but the OC process observations are often unavailable. To
overcome this difficulty, some creative ideas like the artificial contrast, real-time
contrast, and one class classificationwere proposed to develop control charts without
assuming the availability of OC process observations during the design stage of the
related charts. Several representative machine learning control charts based on these
ideas are briefly introduced below.

Control Chart Based on Artificial Contrasts
[27] proposed the idea of artificial contrast to overcome the difficulty that only IC
data are available before the Phase II process monitoring in certain SPC applications.
By this idea, an artificial dataset is first generated from a given off-target distribution
(e.g., Uniform) and observations in that dataset are regarded as OC observations.
Then, a machine learning algorithm (e.g., RF) is applied to the training dataset
that consists of the original IC dataset, denoted as X IC , and the artificial contrast
dataset, denoted asXAC . The classifier obtained by the RF algorithm is then used for
online process monitoring. [14] studied the performance of such machine learning
control charts by using both the RF and SVM algorithms. These machine learning
control charts suffer twomajor limitations. First, their classification error rates cannot
be transferred to the traditional average run length (ARL) metric without the data
independence assumption. Second, their decisions at a given time point during phase
II process monitoring are made based on the observed data at that time point only,
and they have not made use of history data. To overcome these limitations, Hu and
Runger (2010) suggested the following modification that consisted of two major
steps. i) For process observation Xn at a given time point n, the log likelihood ratio
is first calculated as

ln = log
[
p̂1(Xn)

]
− log

[
p̂0(Xn)

]
,
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where p̂1(Xn) and p̂0(Xn) are the estimated probabilities ofXn in each class obtained
by the RF classifier. ii) Amodified EWMA chart is then suggested with the following
charting statistic:

En = λln + (1 − λ)En−1,

where λ ∈ (0, 1] is a weighting parameter. This control chart is denoted as AC,
representing “artificial contrast”. Obviously, like the traditional EWMA charts, the
charting statistic En of AC is a weighted average of the log likelihood ratios of all
available observations up to the time point n.

As suggested by Hu and Runger (2010), the control limit of AC can be determined
by the following 10-fold cross-validation (CV) procedure. First, 90%of the ICdataset
XIC and the artificial contrast dataset XAC is used to train the RF classifier. Then,
the En with a control limit h is applied to the remaining 10% of the IC dataset XIC

to obtain a run length (RL) value. The above CV procedure is then repeated for
C = 1, 000 times, and the average of the C RL values is used to approximate the
ARL0 value for the given h. Finally, h can be searched by a numerical algorithm
(e.g., the bisection searching algorithm) so that the assumed ARL0 value is reached.

Control Chart Based on Real Time Contrasts
The artificial contrasts XAC used in AC are generated from a subjectively chosen
off-target distribution (e.g., Uniform), and thus may not represent the actual OC
observations well. Consequently, the RF classifier trained using XIC and XAC may
not be effective for monitoring certain processes. To improve the chart AC, [10]
propose a real time contrast (RTC) approach, in which the most recent observations
within a moving window of the current time point are used as the contrasts. In their
proposed approach, the IC dataset is first divided into two parts: a randomly selected
N0 observations from XIC , denoted as XIC0 , is used for training the RF classifier,
the remaining IC data, denoted as XIC1 , is used for determining the control limit.
The process observations in a window of the current observation time point n are
treated as OC data and denoted as XACn = {Xn−w+1,Xn−w+2, . . . ,Xn}, where w is
the window size. Then, the RF classifier can be re-trained sequentially over time
using the training dataset that combines XIC0 and XACn , and the decision rule can be
updated accordingly once the new observation Xn is collected at time n.

[10] suggested using the following estimated “out-of-bag” correct classification
rate for observations in XIC0 as the charting statistic:

Pn =
∑

POOB(Xi )I (Xi ∈ XIC0)

|XIC0 |
,

where |XIC0 | denotes the number of observations in the set XIC0 , and POOB(Xi ) is
the estimated “out-of-bag” correct classification probability for the IC observation
Xi that is obtained from the RF classification. As discussed in [10], there could
be several alternative charting statistics, such as the estimated “out-of-bag” correct
classification rate for observations in XACn . But, they found that the chart based on
the above Pn , denoted as RTC, had some favorable properties.
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The control limit of the chart RTC can be determined by the following bootstrap
procedure suggested by [10]. First, we draw with replacement a sample from the
dataset XIC1 . Then, the chart RTC with control limit h is applied to the bootstrap
sample to obtain a RL value. This bootstrap re-sampling procedure is repeated B =
1, 000 times, and the average of the B RL values is used to approximate the ARL0

value for the given h. Finally, h can be empirically selected so that assumed ARL0 is
reached. Finally, h be searched by a numerical algorithm so that the assumed ARL0

value is reached.

Distance Based Control Chart Using SVM
The charting statistic of the RTC chart discussed above actually take discrete values,
because the estimated “out-of-bag” correct classification probabilities {POOB(Xi )}
are obtained from an ensemble of decision trees [4] and [13]. As an alternative, [13]
suggested a distance-based control chart under the framework of SVM, which is
denoted as DSVM. TheDSVMmethod uses the distance between the support vectors
and the process observations in the datasetXACn as a charting statistic.Unlike charting
statistic Pn of the RTC chart, this distance-based charting statistic is a continuous
variable. Because the distance from a sample of process observations to the boundary
surface defined by the support vectors can be either positive or negative, He, Jiang,
and Deng suggested transforming the distance using the standard logistic function

g(a) = 1
1+ exp(−a)

.

Then, the following average value of the transformed distances from individual obser-
vations in XACn to the boundary surface can be defined to be the charting statistic:

Mn =
∑

g(d(Xi ))I (Xi ∈ XACn )

|XACn |
,

where d(Xi ) is the distance from the observationXi to decision boundary determined
by the SVM algorithms at time n.

In the above DSVM chart, the kernel function and the penalty parameter need
to be selected properly. [13] suggested using the following Gaussian radial basis
function (RBF): for any X,X′ ∈ Rp,

K (X,X′) = exp
(‖X − X′‖2

σ 2

)

as the kernel function, where p is dimension of the process observations, and the
parameter σ 2 was chosen to be larger than 2.8. They also suggested choosing the
penalty parameter to be 1. The control limit of the chart DSVM can be determined
by a bootstrap procedure, similar to the one described above for the RTC chart.

Control Chart Based on the KNN Classification
Another approach to develop machine learning control charts is to use one-class
classification (OCC) algorithms. [25] developed a nonparametric control chart based



136 X. Xie and P. Qiu

on the so-called support vector data description (SVDD) approach [26], described
below. By SVDD, the boundary surface of an IC data can be defined so that the
volume within the boundary surface is as small as possible while the Type-I error
probability is controled within a given level of α. Then, the boundary surface is used
as the decision rule for online process monitoring as follows: a new observation is
claimed to be OC if it falls outside of the boundary surface, and IC otherwise. See [6]
for somemodifications and generalizations.However, determination of this boundary
surface is computationally intensive. To reduce the computation burden, Sukchotrat,
Kim and Tsung (2009) suggested a control chart based on the KNN classification,
denoted as KNN. In KNN, the average distance between a given observation Xi and
its k nearest neighboring observations in the IC dataset is first calculated as follows:

K 2
i =

k∑
j=1

‖Xi − NN j (Xi )‖

k
,

where NN j (Xi ) is the j th nearest neighboring observation of Xi in the IC dataset,
and ‖ · ‖ is the Euclidean distance. Then, the (1 − α)th quantile of all such distances
of individual observations in the IC data can be computed. This quantile can be used
as the decision rule for online process monitoring as follows. At the current time n,
if the average distance from Xn to its k nearest neighboring observations (i.e., K 2

n )
is less than the quantile, then Xn is claimed as IC. Otherwise, it is claimed as OC.

In the above KNN chart, the control limit (i.e., the (1 − α)th quantile of {K 2
i }

of individual observations in the IC data) can be refined by the following bootstrap
procedure suggested by Sukchotrat et al. (2009). First, a total of B = 1, 000 bootstrap
samples are obtained from the IC dataset by the simple random sampling procedure
with replacement. Then, the (1 − α)th quantile of {K 2

i } of individual observations in
each bootstrap sample can be computed. Then, the final control limit is chosen to be
the mean of the B such quantiles. The KNN chart assumes that process observations
at different time points are independent. Thus, its ARL0 value equals 1/α.

2.2 Sequential Data De-Correlation

In this subsection, the sequential data de-correlation procedure for multivariate
serially correlated data is described in detail. It is assumed that the IC process
mean is µ and the serial data correlation is stationary with the covariances γ (s) =
Cov(Xi ,Xi+s), for any i and s, that depend only on s.

For the first observation X1, its covariance matrix is γ (0). Then, its standardized
vector can be defined to be

X∗
1 = γ (0)−1/2(X1 − µ).
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After the second observation X2 is collected, let us consider the long vector

(X′
1,X

′
2)

′. Its covariance matrix can be written as $2,2 =
(

γ (0) σ1

σ ′
1 γ (0)

)
, where

σ1 = γ (1). The Cholesky decomposition of $2,2 is given by %2$2,2%
′
2 = D2,

where %2 =
(

Ip 0
−σ ′

1γ (0)
−1 Ip

)
, and D2 =

(
d1 0
0 d2

)
= diag(d1,d2), d1 = γ (0),

and d2 = γ (0) − σ ′
1γ (0)

−1σ1. Therefore, we have Cov(%2e2) = D2, where e2 =
[(X1 − µ)′, (X2 − µ)′]′. Since %2e2 =

(
Ip 0

−σ ′
1γ (0)

−1 Ip

) (
(X1 − µ)′

(X2 − µ)′

)
= (ε′

1,

ε′
2)

′, where

ε1 = X1 − µ,

ε2 = −σ ′
1$

−1
1,1(X1 − µ)+ (X2 − µ),

ε1 and ε2 are uncorrelated. Therefore, the de-correlated and standardized vector of
X2 can be defined to be

X∗
2 = d−1/2

2 ε2 = d−1/2
2

[
−σ ′

1$
−1
1,1(X1 − µ)+ (X2 − µ)

]
.

It is obvious that X∗
1 and X∗

2 are uncorrelated, and both have the identity covariance
matrix Ip.

Similarly, for the third observationX3, which could be correlated withX1 andX2,
consider the long vector (X′

1,X
′
2,X

′
3)

′. Its covariancematrix can bewritten as$3,3 =(
$2,2 σ2

σ ′
2 γ (0)

)
, where σ2 = ([γ (2)]′, [γ (1)]′)′. If we define %3 =

(
%2 0

−σ ′
2$

−1
2,2 Ip

)

and D3 =




d1 0 0
0 d2 0
0 0 d3



 = diag(d1,d2,d3), where d3 = $3,3 − σ ′
2$

−1
2,2σ2, then we

have %3$3,3%
′
3 = D3. This motivates us to consider %3e3, where e3 = [(X3 −

µ)′, (X1 − µ)′, (X2 − µ)′]′. It can be checked that %3e3 = (ε′
1, ε

′
2, ε

′
3)

′, where

ε3 = −σ ′
2$

−1
2,2e2 + (X3 − µ).

SinceCov(%3e3) = D3, e3 is uncorrelatedwith e1 and e2. Therefore, the de-correlated
and standardized vector of X3 is defined to be

X∗
3 = d−1/2

3 ε3 = d−1/2
3 (−σ ′

2$
−1
2,2e2 + (X3 − µ)),

which is uncorrelated with X∗
1 and X∗

2 and has the identity covariance matrix Ip.
Following the above procedure, we can define the de-correlated and standardized

vectors sequentially after a new observation is collected. More specifically, at the j-
th observation time, the covariance matrix of the long vector (X′

1,X
′
2, . . . ,X

′
j )

′ can

be written as $ j, j =
(

$ j−1, j−1 σ j−1

σ ′
j−1 γ (0)

)
, where σ j−1 = ([γ ( j − 1)]′, . . . , [γ (2)]′,
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[γ (1)]′)′. It can be checked that % j$ j, j%
′
j = D j , where % j =(

% j−1 0
−σ ′

j−1$
−1
j−1, j−1 Ip

)
, D j = diag(d1,d2, . . . d j ), and d j = $ j, j − σ ′

j−1$
−1
j−1, j−1

σ j−1. Therefore, if we define

ε j = −σ ′
j−1$

−1
j−1, j−1e j−1 + (X j − µ),

then % jε j = (e′
1, e

′
2, . . . , e

′
j )

′ and Cov(% jε j ) = Dj , which implies that e j is uncor-
related with {e1, . . . , e j−1}. Therefore, the de-correlated and standardized vector of
X j is defined to be

X∗
j = d−1/2

j ε j = d−1/2
j (−σ ′

j−1$
−1
j−1, j−1e j−1 + (X j − µ)),

which is uncorrelated with X∗
1, . . . ,X

∗
j−1 and has the identity covariance matrix Ip.

By the above sequential data de-correlation procedure, we can transform the orig-
inally correlated process observations to a sequence of uncorrelated and standardized
observations, each of which has the mean 0 and the identity covariance matrix Ip.
In reality, the IC parameters µ and {γ (s)} are usually unknown and should be esti-
mated in advance. To this end, µ and {γ (s)} can be estimated from the IC dataset
XIC = {X−m0+1,X−m0+2, . . . ,X0} as follows:

µ̂ = 1
m0

0∑

i=−m0+1

Xi (1)

γ̂ (s) = 1
m0 − s

−s∑

i=−m0+1

(Xi+s − µ̂) (Xi − µ̂)′ .

2.3 Machine Learning Control Charts for Monitoring
Serially Correlated Data

To monitor a serially correlated process with observations X1,X2, . . . ,Xn, . . ., we
can sequentially de-correlate these observationsfirst byusing the procedure described
in the previous subsection and then apply the machine learning control charts
described in Subsect. 2.1. However, at the current time point n, to de-correlate Xn

with all its previous observationsX1,X2, . . . ,Xn−1, will take much computing time,
especially when n becomes large. To reduce the computing burden, [22] suggested
that the observationXn only need to be de-correlated with its previous bmax observa-
tions, based on the assumption that two process observations becomes uncorrelated
if their observation times are more than bmax apart. This assumption basically says
that the serial data correlation is short-ranged, which should be reasonable in many
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applications. Based on this assumption, a modified machine learning control chart
for monitoring serially correlated data is summarized below.

• When n = 1, the de-correlated and standardized observation is defined to be
X̂∗

1 = γ̂ (0)−1/2(X1 − µ̂). Set an auxiliary parameter b to be 1, and then apply a
machine learning control chart to X̂∗

1.
• When n > 1, the estimated covariance matrix of (X′

n−b, . . . ,X
′
n)

′ is defined to
be

$̂n,n =




γ̂ (0) · · · γ̂ (b)
...

. . .
...

γ̂ (b) . . . γ̂ (0)



 =:
(

$̂n−1,n−1 σ̂n−1

σ̂ ′
n−1 γ̂ (0)

)
.

Then, the de-correlated and standardized observation at time n is defined to be

X̂∗
n = d̂−1/2

n

[
−σ̂ ′

n−1$̂
−1
n−1,n−1̂en−1 + (Xn − µ̂)

]
,

where d̂ j = $̂ j, j − σ̂ ′
j−1$̂

−1
n−1,n−1σ̂ j−1, and ên−1 = [(Xn−b − µ̂)′, (Xn−b+1 −

µ̂)′, . . . , (Xn−1 − µ̂)′]′. Apply a machine learning control chart to X̂∗
n to see

whether a signal is triggered. If not, set b = min(b + 1, bmax ) and n = n + 1,
and monitor the process at the next time point.

3 Simulation Studies

In this section, we investigate the numerical performance of the four existingmachine
learning control charts AC, RTC, DSVM and KNN described in Subsect. 2.1, in
comparison with their modified versions AC-D, RTC-D, DSVM-D and KNN-D
discussed in Subsect. 2.3, where “-D" indicates that process observations are de-
correlated before each method is used for process monitoring. In all simulation
examples, the nominal ARL0 values of all charts are fixed at 200. If there is no further
specification, the parameter λ in the chart AC is chosen to be 0.2, as suggested in He
et al. (2010), the moving window size w in the charts RTC and DSVM is chosen to
be 10, as suggested in [10] and [13], and the number of nearest observations k in the
chart KNN is chosen to be 30, as suggested in Sukchotrat et al. (2009). The number
of quality variables is fixed at p = 10, the parameter bmax is chosen to be 20, and
the IC sample size is fixed at m0 = 2, 000. The following five cases are considered:

• Case I: Process observations {Xn, n ≥ 1} are i.i.d. with the IC distribution
N10(0, I10×10).

• Case II: Process observations {Xn, n ≥ 1} are i.i.d. at different observation times,
the 10 quality variables are independent of each other, and each of them has the
IC distribution χ2

3 , where χ2
3 denotes the chi-square distribution with the degrees

of freedom being 3.
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• Case III: Process observationsXn = (Xn1, Xn2, . . . , Xn10)
′ are generated as fol-

lows: for each i , Xni follows the AR(1) model Xni = 0.1Xn−1,i + εni , where
X01 = 0 and {εn1} are i.i.d. random errors with the N (0, 1) distribution. All 10
quality variables are assumed independent of each other.

• Case IV: Process observations Xn = (Xn1, Xn2, . . . , Xn10)
′ are generated as

follows: for each i , Xni follows the ARMA(3,1) model Xni = 0.8Xn−1,i −
0.5Xn−2,i + 0.4Xn−3,i + εni − 0.5εn−1,i , where X1i = X2i = X3i = 0 and {εni }
are i.i.d. random errors with the distribution χ2

3 . All 10 quality variables are
assumed independent of each other.

• Case V: Process observations follow the model Xn = AXn−1 + εn , where {εn}
are i.i.d. random errors with the N10(0, B) distribution, A is a diagonal matrix
with the diagonal elements being 0.5, 0.4, 0.3, 0.2, 0.1, 0.1, 0.2, 0.3, 0.4, 0.5,
and B is a 10 × 10 covariance matrix with all diagonal elements being 1 and all
off-diagonal elements being 0.2.

In all five cases described above, each variable is standardized to have mean 0 and
variance 1 before process monitoring. Obviously, Case I is the conventional case
considered in the SPC literature with i.i.d. process observations and the standard
normal IC process distribution. Case II also considers i.i.d. process observations, but
the IC process distribution is skewed. Cases III and IV consider serially correlated
process observations across different observation times; but the 10 quality variables
are independent of each other. In Case V, process observations are serially correlated
and different quality variables are correlated among themselves as well.

Evaluation of the IC Performance. We first evaluate the IC performance of the
related control charts. The control limits of the four control charts AC, RTC, DSVM
and KNN are determined as discussed in Subsect. 2.1. For each method, its actual
ARL0 value is computed as follows. First, an IC dataset of size m0 = 2, 000 is gen-
erated, and some IC parameters (e.g. µ and γ (s)) are estimated from the IC dataset.
Then, each control chart is applied to a sequence of 2,000 IC process observations for
online process monitoring, and the RL value is recorded. This simulation of online
process monitoring is then repeated for 1,000 times, and the actual conditional ARL0

value conditional on the given IC data is computed as the average of the 1,000 RL
values. Finally, the previous two steps are repeated for 100 times. The average of the
100 actual conditional ARL0 values is used as the approximated actual ARL0 value
of the related control chart, and the standard error of this approximated actual ARL0

value can also be computed. For the four modified charts AC-D, RTC-D, DSVM-D
and KNN-D, their actual ARL0 values are computed in a same way, except that
process observations are de-correlated before online monitoring.

From Table1, we can have the following results. First, the IC performance of the
charts AC, RTC, DSVM and KNN all have a reasonably stable performance in Cases
I and II when process observations are assumed to be i.i.d. at different observation
times and different quality variables are assumed independent as well. Second, in
Cases III-V when there is a serial data correlation across different observation times
and data correlation among different quality variables, the IC performance of the
charts AC, RTC, DSVM and KNN becomes unreliable since their actual ARL0
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Table 1 Actual ARL0 values and their standard errors (in parentheses) of four machine learning
control charts and their modified versions when their nominal ARL0 values are fixed at 200.
Methods Case I Case II Case III Case IV Case V

RF 189(3.98) 194(4.20) 105(1.42) 119(2.05) 106(1.33)
RF-D 193(3.22) 182(3.49) 188(3.61) 193(3.70) 194(3.37)

RTC 203(4.66) 207(5.23) 252(5.97) 133(3.02) 269(6.01)
RTC-D 194(3.68) 196(3.64) 201(4.00) 188(3.49) 190(3.96)

DSVM 213(5.20) 195(4.77) 263(6.99) 118(2.87) 277(6.34)
DSVM-D 193(4.33) 198(3.50) 193(4.16) 190(3.72) 188(3.73)

KNN 196(4.77) 188(3.88) 156(3.70) 266(6.02) 134(4.03)
KNN-D 191(4.20) 194(3.69) 194(4.01) 187(3.20) 190(3.18)

values are substantially different from the nominal ARL0 value of 200. Third, as a
comparison, the IC performance of the four modified charts AC-D, RTC-D, DSVM-
D and KNN-D is stable in all cases considered. Therefore, this example confirms
that the IC performance of the machine learning control charts can be improved in a
substantial way by using the suggested modification discussed in Subsect. 2.3.

Evaluation of the OC Performance. Next, we evaluate the OC performance of the
related charts in the five cases discussed above. In each case, a shift is assumed to
occur at the beginning of online process monitoring with the size 0.25, 0.5, 0.75 and
1.0 in each quality variable. Other setups are the same as those in Table1. To make
the comparison among different charts fair, the control limits of the charts have been
adjusted properly so that their actual ARL0 values all equal to the nominal level
of 200. The results of the computed ARL1 values of these charts in Cases I-V are
presented in Fig. 1.

From the Fig. 1, it can be seen that the modified versions of the four control charts
all have a betterOCperformance inCases III-Vwhen the serial data correlation exists.
In Cases I and II when process observations are independent at different observation
times, the OC performance of the modified versions of the four charts have a slightly
worse performance than the original versions of the related charts. The main reason
for the latter conclusion is due to the “masking effect” of data de-correlation, as
discussed in [29]. Remember that the de-correlated process observations are linear
combinations of the original process observations. Therefore, a shift in the original
data would be attenuated during data de-correlation, and consequently the related
control charts would be less effective in cases when serial data correlation does not
exist.
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Fig. 1 Computed ARL1 values of the original and modified versions of the four control charts
AC, RTC, DSVM and KNN when their nominal ARL0 values are fixed at 200, the parameters of
the charts are chosen as in the example of Table1, all quality variables have the same shift, and the
shift size changes among 0.25, 0.5, 0.75 and 1.0.

4 A Real-Data Application

In this section, a dataset from a semiconductor manufacturing process is used to
demonstrate the application of the modified machine learning control charts dis-
cussed in the previous sections. The dataset is available in the UC Irvine Machine
Learning Repository (http://archive.ics.uci.edu/ml/datasets/SECOM). It has a total
of 590 quality variables and 1,567 observations of these variables. A total of 600
observations of five specific quality variables are selected here. The original data are
shown in Fig. 2. From the figure, it seems that the first 500 observations are quite
stable, and thus they are used as the IC data. The remaining 100 observations are
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Fig. 2 Original observations of the five quality variables of a semiconductor manufacturing data.
Thevertical dashed line in eachplot separates the ICdata from the data for online processmonitoring.

used for online process monitoring. In Fig. 2, the training and testing datasets are
separated by the dashed vertical lines.

For the IC data, we first check for existence of serial data correlation. To this end,
the p-values of the Durbin-Watson test for the five quality variables are 1.789 ×
10−3, 4.727 × 10−1, 4.760 × 10−4, 1.412 × 10−4, and 9.744 × 10−2. Thus, there
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Fig. 3 Control charts AC-D, RTC-D, DSVM-D, and KNN-D for online monitoring of a semicon-
ductor manufacturing data. The horizontal dashed line in each plot denotes the control limit of the
related control chart.

is a significant autocorrelation for the first, third and fourth quality variables. The
Augmented Dickey-Fuller (ADF) test for stationality of the autocorrelation gives p-
values that are< 0.01 for all quality variables. This result suggests that the stationary
assumption is valid in this data. Therefore, the IC data have a significant stationary
serial data correlation in this example, and the modification for the machine learning
charts discussed in Sects. 2 and 3 should be helpful.

Next, we apply the four modified control charts AC-D, RTC-D, DSVM-D and
KNN-D to this data for online process monitoring starting from the 501st observation
time. In all control charts, the nominal ARL0 values is fixed at 200, and their control
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limits are computed in the same way as that in the simulation study of Sect. 3. All
four control charts are shown in Fig. 3. From the plots in the figure, the charts AC-D,
RTC-D, DSVM-D and KNN-D give their first signals at the 539th, 529th, 525th , and
534th observation times, respectively. In order to determine whether these signals are
false alarms or not, the change-point detection approach based on the generalized
maximum likelihood estimation (cf., [21], Sect. 7.5) is applied to the test data (i.e.,
the data between the 501st and 600th observation times). The detected change-point
position is at 517. The Hotelling’s T 2 test for checking whether the mean difference
between the two groups of datawith the observation times in [501,516] and [517,600]
is significantly different from 0 gives the p-value of 4.426 × 10−3. Thus, there indeed
is a significant mean shift at the time point 517. In this example, it seems that all four
charts can detect the shift and the chart DSVM-D can give the earliest signal among
them.

5 Concluding Remarks

Recently, several multivariate nonparametric control charts based on different
machine learning algorithms have been proposed for online process monitoring.
Most existing machine learning control charts are based on the assumption that the
multivariate observations are independent of each other. These control charts have
a reliable performance when the data independence assumption is valid. However,
when the process data are serially correlated, they may not be able to provide a reli-
able process monitoring. In this chapter, we have suggested a modification for these
machine learning control charts, bywhich process observations are first de-correlated
before they are used for monitoring serially correlated data. Numerical studies have
shown that the modified control charts have a more reliable performance than the
original charts in cases when the serial data correlation exists.

There are still some issues to address in the future research. For instance, the
“masking effect” of data de-correlation could attenuate the shift information in the
de-correlated data. One possible solution is to use the modified data de-correlation
procedure discussed inYou andQiu (2017). By this approach, the process observation
at the current time point is de-correlated onlywith a small number of previous process
observations within the so-called “spring length” (cf., [9]) of the current observation
time. Another issue is related to the assumption of short-range stationary serial data
correlation that has been used in the proposed modification procedure. In some
applications, the serial data correlation could be long-range and non-stationary (cf.,
[5]). Thus, the proposed modification could be ineffective for such applications.

References

1. Aggarwal CC (2018). Neural Networks and Deep Learning. Springer, New Yorker



146 X. Xie and P. Qiu

2. Alwan LC, Roberts HV (1995) The problem of misplaced control limits. J Roy Stat Soc (Ser
C) 44:269–278

3. Apley DW, Tsung F (2002) The autoregressive T 2 chart for monitoring univariate autocorre-
lated processes. J Qual Technol 34:80–96

4. Breiman L (2001) Random forests. Mach Learn 45:5–32
5. Brean J (1992) Statistical methods for data with long-range dependence. Stat Sci 4:404–416
6. Camci F, ChinnamRB, Ellis RD (2008) Robust kernel distance multivariate control chart using

support vector principles. Int J Prod Res 46:5075–5095
7. Capizzi G, Masarotto G (2008) Practical design of generalized likelihood ratio control charts

for autocorrelated data. Technometrics 50:357–370
8. Carvalhoa TP, Soares F, Vita R, Francisco R, Basto JP, Alcalá SGS (2019) A systematic

literature review of machine learning methods applied to predictive maintenance. Comput
Ind Eng 137:106024

9. Chatterjee S, Qiu P (2009) Distribution-free cumulative sum control charts using bootstrap-
based control limits. Ann Appl Stat 3:349–369

10. Deng H, Runger G, Tuv E (2012) System monitoring with real-time contrasts. J Qual Technol
44:9–27

11. Göb R (2006) Data mining and statistical control - a review and some links. In: Lenz HJ,
Wilrich PT (ed) Frontiers in Statistical Quality Control, vol 8, pp 285–308. Physica-Verlag,
Heidelberg

12. Hastie T, Tibshirani R, Friedman J (2001) The Elements of Statistical Learning - Data Mining,
Inference, and Prediction. Springer-Verlag, Berlin

13. He S, Jiang W, Deng H (2018) A distance-based control chart for monitoring multivariate
processes using support vector machines. Ann Oper Res 263:191–207

14. Hwang W, Runger G, Tuv E (2007) Multivariate statistical process control with artificial con-
trasts. IIE Trans 2:659–669

15. Knoth S, Schmid W (2004) Control charts for time series: a review. In: Lenz HJ, Wilrich PT
(ed) Frontiers in Statistical Quality Control, vol 7, pp 210–236. Physica-Verlag, Heidelberg

16. Lee HC, Apley DW (2011) Improved design of robust exponentially weighted moving average
control charts for autocorrelated processes. Qual Reliab Eng Int 27:337–352

17. Li W, Qiu P (2020) A general charting scheme for monitoring serially correlated data with
short-memory dependence and nonparametric distributions. IISE Trans 52:61–74

18. Zhang L, Mei T (2020) Nonparametric monitoring of multivariate data via KNN learning. Int
J Prod Res. https://doi.org/10.1080/00207543.2020.1812750

19. Prajapati DR, Singh S (2012) Control charts for monitoring the autocorrelated process param-
eters: a literature review. Int J Prod Qual Manag 10:207–249

20. Psarakis S, Papaleonida GEA (2007) SPC procedures for monitoring autocorrelated processes.
Qual Technol Quant Manag 4:501–540

21. Qiu P (2014) Introduction to Statistical Process Control. Chapman Hall/CRC, Boca Raton
22. Qiu P, Li W, Li J (2020) A new process control chart for monitoring short-range serially

correlated data. Technometrics 62:71–83
23. Runger GC, Willemain TR (1995) Model-based and model-free control of autocorrelated pro-

cesses. J Qual Technol 27:283–292
24. Sukchotrat T, Kim SB, Tsui K-L, Chen VCP (2011) Integration of classification algorithms and

control chart techniques for monitoring multivariate processes. J Stat Comput Simul 81:1897–
1911

25. Sun R, Tsung F (2003) A kernel-distance-based multivariate control chart using support vector
methods. Int J Prod Res 41:2975–2989

26. Tax DM, Duin RPW (2004) Support vector data description. Mach Learn 54:45–66
27. Tuv E, Runger G (2003) Learning patterns through artificial contrasts with application to

process control. Trans Inf Commun Technol 29:63–72
28. Weiß CH (2015) SPC methods for time-dependent processes of counts - a literature review.

Cogent Math 2:1111116



Machine Learning Control Charts for Monitoring Serially Correlated Data 147

29. You L, Qiu P (2019) Fast computing for dynamic screening systems when analyzing correlated
data. J Stat Comput Simul 89:379–394

30. Xue L, Qiu P (2020) A nonparametric CUSUM chart for monitoring multivariate serially
correlated processes. J Qual Technol. https://doi.org/10.1080/00224065.2020.1778430

31. Zhang C, Tsung F, Zou C (2015) A general framework for monitoring complex processes with
both in-control and out-of-control information. Comput Ind Eng 85:157–168


