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Air pollution is a major global public health risk factor. Among all
air pollutants, PM2.5 is especially harmful. It has been well demonstrated
that chronic exposure to PM2.5 can cause many health problems, including
asthma, lung cancer and cardiovascular diseases. To tackle problems caused
by air pollution, governments have put a huge amount of resources to im-
prove air quality and reduce the impact of air pollution on public health. In
this effort it is extremely important to develop an air pollution surveillance
system to constantly monitor the air quality over time and to give a signal
promptly once the air quality is found to deteriorate so that a timely gov-
ernment intervention can be implemented. To monitor a sequential process,
a major statistical tool is the statistical process control (SPC) chart. How-
ever, traditional SPC charts are based on the assumptions that process obser-
vations at different time points are independent and identically distributed.
These assumptions are rarely valid in environmental data because seasonality
and serial correlation are common in such data. To overcome this difficulty,
we suggest a new control chart in this paper, which can properly accommo-
date dynamic temporal pattern and serial correlation in a sequential process.
Thus, it can be used for effective air pollution surveillance. This method is
demonstrated by an application to monitor the daily average PM2.5 levels in
Beijing and shown to be effective and reliable in detecting the increase of
PM2.5 levels.

1. Introduction. Air pollution is a major global public health risk factor, especially in
countries such as China, India and other low- and middle-income countries (Health Effects
Institute (2019)). Among all air pollutants, fine particle masses with aerodynamic diame-
ters ≤ 2.5μm (i.e., PM2.5) are especially harmful, since they are small enough to penetrate
deep into our respiratory tract and lungs and, consequently, damage lung function and the
human respiratory system (Boogaard, Walker and Cohen (2019), Cohen et al. (2017), Xing
et al. (2016)). It has been confirmed that chronic exposure to PM2.5 can cause many health
problems, including asthma, lung cancer, accelerated atherosclerosis and cardiovascular dis-
eases (e.g., Pope et al. (2004), Wu, Jin and Carlsten (2018)). Therefore, PM2.5 pollution has
attracted attention of many governments, and much financial and human resource has been
spent for improving air quality. In this effort, early detection of severe air pollution is espe-
cially important, because it can help governments to figure out the pollution source and to
take proper and timely measures to prevent and/or control the pollution. To this end, some
pollution surveillance systems have been developed to monitor pollution levels in different
regions. For instance, the municipal government of Beijing in China developed a four-level,
color-coded (i.e., blue, yellow, orange and red) pollution alert system in 2013 for collecting
and monitoring the PM2.5 data of the city, where the four colors denoted the four different
levels of the PM2.5 pollution with “blue” denoting the lowest level and “red” denoting the
highest level. The city government issued the first “orange” alert on 11/30/2015 and the first
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FIG. 1. Pictures of a region around the Beijing National Stadium on 11/23/2015 (left panel) and 11/30/2015
(right panel).

“red” alert on 12/05/2015 due to extreme air pollution in 2015. To reduce air pollution and
minimize its impact on public health, the city government implemented several preventive
measures, including closing some factories and schools, halting certain construction sites
and urging city residents to minimize outdoor activities. To demonstrate the air pollution in
2015, Figure 1 presents two pictures of a region around the Beijing National Stadium taken
on 11/23/2015 and 11/30/2015, that is, before and after the first “orange” alert on 11/30/2015.
From the pictures, it can be seen that heavy smog lingered over the Beijing National Stadium
and the surrounding area on 11/30/2015, and the air quality was much better one week before.

Environmental data often have complicated structure, including complex data distribu-
tions, serial correlation, seasonality, other dynamic patterns and more. Therefore, it is chal-
lenging to analyze them properly. In the atmospheric environment literature there are some
existing methods on quantitative assessment of air quality (Liang et al. (2015, 2016), Seaman
(2000)). For instance, Liang et al. (2015) used the local kernel smoothing procedure to as-
sess PM2.5 pollution in Beijing during the years 2010–2014. These existing methods, how-
ever, are retrospective and cannot effectively monitor the air quality sequentially over time.
For proactive decision making, some researchers used the conventional statistical process
control (SPC) charts for air pollution surveillance (e.g., Al-Rashed, Al-Mutairi and Attar
(2019), Barratt et al. (2007), Chelani (2011)). These conventional SPC charts, such as the
Shewhart, cumulative sum (CUSUM), exponentially weighted moving average (EWMA) and
change-point detection (CPD) charts (cf. Qiu (2014)), were originally developed for monitor-
ing production lines in the manufacturing industry and require the assumptions that process
observations at different observation times are independent and identically distributed with
a specific parametric distribution. In practice, however, these assumptions are rarely valid.
For instance, observations of PM2.5 concentration usually have seasonal variation (Jacob and
Winner (2009), Zhao et al. (2009)), and serial correlation almost always exists in such sequen-
tial time series data. In the SPC literature it has been well demonstrated that the conventional
control charts would not be reliable to use in cases when one or more of their assumptions
are violated (e.g., Lee and Apley (2011), Xue and Qiu (2021)). Therefore, they would not be
appropriate to use for air pollution surveillance.

The underlying process of an air quality index (e.g., PM2.5 concentration) over time in a
specific region can be regarded as a dynamic process in the sense that its distribution would
change over time even when the index readings are at normal levels. Thus, air pollution
surveillance is for sequential monitoring of a dynamic process whose observations could be
serially correlated. For sequential process monitoring, SPC provides a major statistical tool.
Besides the conventional SPC charts, many newer control charts have been developed for
various applications, where the conventional model assumptions are invalid, which include
nonparametric charts for monitoring processes whose distributions do not belong to any para-
metric distribution families (e.g., Chakraborti and Graham (2019), Qiu (2018)) and charts for
monitoring processes with serially correlated observations (e.g., Apley and Tsung (2002),
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Capizzi and Masarotto (2008), Qiu and Xie (2021)). Some control charts have been devel-
oped in the framework of dynamic screening system (DySS) for applications such as disease
screening for individual patients (e.g., Qiu and Xiang (2014), You and Qiu (2020)). However,
the DySS method was developed for monitoring many individual dynamic processes based
on an in-control (IC) dataset that contains observed data of some IC processes. For instance, if
sequential observations of a set of disease risk factors (e.g., cholesterol level, systolic blood
pressure, diastolic blood pressure) of a given patient are regarded as observations of a dy-
namic process, then the DySS method is for monitoring many such processes of different
patients. In the air pollution surveillance problem considered in the current paper, however,
only one sequential process is involved, which is the sequential observations of certain air
pollutants at a single place like Beijing. Also, the DySS method requires a quite large IC
data set to be available in advance for estimating the IC longitudinal pattern of the individual
dynamic processes, which is unavailable in the current problem. Therefore, for air pollution
surveillance and other applications of dynamic process monitoring, new SPC methods are
needed.

In this paper, we develop a new SPC chart for dynamic process monitoring, which should
be effective for applications such as air pollution surveillance, where process distributions
could be nonparametric and time-varying, and process observations could be serially corre-
lated. This new method is described in detail in Section 2. Some numerical justifications of
the new method are given in Section 3. It is applied to an air quality dataset collected in
Beijing in Section 4. Some remarks conclude the article in Section 5.

2. New control chart for dynamic process monitoring. Our proposed new control
chart can be described briefly as follows. First, it needs an IC data set to obtain an initial
estimate of the IC longitudinal pattern of the dynamic process under monitoring. Second, at
the current time point during online process monitoring, the observed data are first standard-
ized using the estimated IC longitudinal pattern and then decorrelated with all historical data.
Third, a control chart is then applied to the decorrelated data and makes a decision whether
the process has a distributional shift at the current time point. If the decision is “yes,” then
stop process monitoring and communicate with the related personnel for a subsequent reac-
tion to the signal. Otherwise, update the estimate of the IC longitudinal pattern using the IC
data at the previous time point and the observed data at the current time point. These major
steps are described in detail below.

2.1. Initial estimation of the IC longitudinal pattern. Let y(t) = (y1(t), y2(t), . . . , yp(t))′
be a vector of p variables to monitor about a dynamic process at time t . Before online process
monitoring, assume that an IC dataset YIC = {y(t−m0+1),y(t−m0+2), . . . ,y(t0)} of size m0 is
available. This IC dataset follows the multivariate nonparametric longitudinal model:

(1) y(tj ) = μ(tj ) + ε(tj ) for j = −m0 + 1,−m0 + 2, . . . ,0,

where tj ∈ [0, T ] is the j th time point, μ(tj ) = (μ1(tj ),μ2(tj ), . . . ,μp(tj ))
′ is the mean of

y(tj ) and ε(tj ) is the p-dimensional zero-mean error term. In Model (1) the covariance struc-
ture is described by V (t ′, t) = Cov(ε(t ′), ε(t)), for any t ′, t ∈ [0, T ]. Besides the regularity
condition that both μ(t) and V (t ′, t) are continuous functions, we do not impose any other
assumptions on Model (1). Thus, it is flexible.

To obtain an initial estimate of μ(t), we can compute the local linear kernel (LLK)
estimates of all components of μ(t) (cf. Fan and Gijbels (1996)). In matrix notation,
let Y = (y1(t−m0+1), . . . , y1(t0), . . . , yp(t−m0+1), . . . , yp(t0))

′, and K = diag{K(
tj−t

hl
), j =

−m0 + 1, . . . ,0, l = 1, . . . , p}, where K(·) is a kernel function and {hl, l = 1, . . . , p} are
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bandwidths. Then, the initial estimator of μ(t) can be obtained by the following LLK smooth-
ing procedure:

(2) min
β∈R2p

[
Y − (Ip×p ⊗ X)β

]′K[
Y − (Ip×p ⊗ X)β

]
,

where ⊗ denotes the Kronecker product, Ip×p is the p×p identity matrix, β = (β01, β11, . . .,
β0p,β1p)′ are coefficients and X = ((1, t−m0+1 − t)′, (1, t−m0+2 − t)′, . . . , (1, t0 − t)′)′. The

solution of (2) has the expression β̂
(0) = [Q(0)]−1J(0), where Q(0) = (Ip×p ⊗ X)′K(Ip×p ⊗

X), and J(0) = (Ip×p ⊗ X)′KY. The initial LLK estimate of μ(t) is defined to be

(3) μ̂(0)(t) = [
β̂

(0)]′
(Ip×p ⊗ e1),

where e1 = (1,0)′. In the above LLK procedure the kernel function K(·) is usually chosen to
be the Epanechnikov kernel function, that is, K(u) = 3

4(1−u2)I (|u| ≤ 1), because of its good
properties (Epsnečnikov (1969)). For the bandwidths {hl, l = 1,2, . . . , p}, we suggest choos-
ing them using the following modified cross-validation (MCV) procedure that was originally
suggested by De Brabanter et al. (2011) for handling bandwidth selection in a univariate re-
gression setup with correlated data. By this approach the bandwidths {hl, l = 1, . . . , p} can
be chosen by minimizing the following MCV score:

MCV(h1, h2, . . . , hp) = 1

m0

0∑
i=−m0+1

[
y(ti) − μ̂−i (ti)

]′[y(ti) − μ̂−i (ti)
]
,

where μ̂−i(ti) is the leave-one-out estimate of μ(ti) by (2) when the observation y(ti) is
excluded in the computation and when the kernel function K(·) is modified to be

Kε(u) = 4

4 − 3ε − ε3

⎧⎪⎪⎨⎪⎪⎩
3

4

(
1 − u2)

I
(|u| ≤ 1

)
when |u| ≥ ε,

3(1 − ε2)

4ε
|u| when |u| < ε,

where ε ∈ (0,1) is a constant.
After μ̂(0)(t) is obtained, the initial estimate of the covariance function V (t ′, t) can be

defined to be the following weighted moment estimate: for any t ′, t ∈ [0, T ],

(4) V̂
(
t ′, t

) =
∑0

j=−m0+1
∑0

k=−m0+1(y(tj ) − μ̂(0)(tj ))(y(tk) − μ̂(0)(tk))
′K(

tj−t ′
q

)K( tk−t
q

)∑0
j=−m0+1

∑0
k=−m0+1 K(

tj−t ′
q

)K( tk−t
q

)
,

where the kernel function K(·) is still chosen to be the Epanechnikov kernel function and the
bandwidth q is chosen by minimizing the following cross-validated prediction error (PE):

PE(q) = 1

m0

0∑
i=−m0+1

(
y(ti) − ŷ−i (ti)

)′(y(ti) − ŷ−i (ti)
)
,

where ŷ−i (ti) is the predicted value of y(ti) obtained by the kriging method (cf. Cressie
and Wikle (2011)) described below. For −m0 + 1 ≤ i ≤ 0, let Y−i be the matrix with
{y(tk), |tk − ti | ≤ q and k �= i} as its columns and ê−i be the corresponding residual matrix.
Then, the predicted value of y(ti) is defined to be ŷ−i (ti) = μ̂(0)(ti) + V̂ ′

i,−i V̂
−1
−i ê−i , where

V̂i,−i is the estimated covariance matrix between y(ti) and Y−i , V̂−i is the estimated covari-
ance matrix of Y−i , and both of them can be computed from V̂ (t ′, t) defined in (4). It should
be pointed out that the estimate V̂ (t ′, t) may not be a positive semidefinite matrix for each
(t, t ′). Thus, it may not be a legitimate covariance matrix. In this paper, we suggest using the
matrix modification method discussed in Higham (1988) to modify it properly to be a valid
covariance matrix.
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2.2. Online monitoring of dynamic processes. Next, we discuss online monitoring of
dynamic processes. Assume that observations of a process to monitor follow the model

y(tn) = μ(tn) + ε(tn) for n ≥ 1,

where tn > T are observation times. To account for possible seasonality of the process, it
is assumed that the time interval [0, T ] of the IC data contains a whole season, and the
mean function μ(t) is periodic in time with the period T when the process is IC, so that
μ(t) = μ(t∗), where t = t∗ + lT , t∗ ∈ [0, T ] and l ≥ 1 is an integer. In this setup the regular
longitudinal pattern of the process in [0, T ] can be used as a baseline pattern, and the proposed
control chart described below is for detecting a shift in the longitudinal pattern of the process
from this baseline pattern.

The process observations {y(tn), n ≥ 1} could be serially correlated in applications. Be-
cause the conventional control charts are designed for cases with uncorrelated process obser-
vations only, we try to decorrelate them properly before a control chart is used for process
monitoring. To this end, it is often reasonable, in practice, to assume that the correlation
between two process observations is weaker when their observation times are farther away.
Thus, we assume that Cov(y(ti),y(tj )) = 0, when |ti − tj | > bmax where bmax > 0 denotes
the time range of serial correlation. Based on this assumption, at the current time point tn,
y(tn) should be decorrelated with its previous bmax observations. Because data decorrelation
needs to be implemented at each observation time during process monitoring, reduction of
computing time is important. To accomplish that, the concept of spring length, suggested by
Chatterjee and Qiu (2009), will be used in the proposed method. This concept is based on
the restarting mechanism of a CUSUM chart (Qiu (2014), Chapter 4). At a given time point,
if the CUSUM chart finds that the likelihood to have a process distributional shift is small,
then its charting statistic would be reset to 0 and all process observations collected at the
current and previous observation times would be ignored in subsequent process monitoring.
At the current time point tn, the spring length bn is then defined to be the number of obser-
vation times from the previous reset of the charting statistic to the current time tn. So, based
on the concept of spring length, y(tn) only needs to be decorrelated with the previous bn−1
observations since process observations collected before the time tn−bn−1 would not be used
in process monitoring at tn, where bn−1 is used here because bn is not defined yet before
the chart makes a decision about the process status at tn. Let φn = min{bmax, bn−1}. Then,
at the current time point tn, we need to decorrelate y(tn) with the previous φn observations.
Since bn−1 is often a single-digit integer (cf. You and Qiu (2019)), much computation could
be saved by using φn in the sequential data decorrelation.

In cases when monitoring a conventional process with time-independent IC process dis-
tribution, Li and Qiu (2017) proposed a sequential data decorrelation and standardization
procedure. This procedure has been generalized for monitoring dynamic processes in this
paper and the generalized procedure is described below:

• When n = 1, the decorrelated and standardized observation of y(t1) is defined to be
ŷ∗(t1) = [V̂ (t1, t1)]−1/2(y(t1) − μ̂(0)(t1)).

• When n > 1, define ên−1 = ((y(tn−φn) − μ̂(n−1)(tn−φn))
′, . . . , (y(tn−1) − μ̂(n−1)(tn−1))

′)′
and Wn = [y(tn−φn),y(tn−φn+1), . . . ,y(tn)]′, where the estimate μ̂(n−1)(t) is defined in
Expression (7) below. The estimates of Cov(Wn,Wn) and Cov(Wn−1,y(tn)) are denoted
as �̂n,n and �̂n−1,n, respectively, and we have

�̂n,n =
⎛⎜⎝V̂ (tn−φn, tn−φn) · · · V̂ (tn−φn, tn)

...
. . .

...[
V̂ (tn−φn, tn)

]′
. . . V̂ (tn, tn)

⎞⎟⎠ =:
(
�̂n−1,n−1 �̂n−1,n

�̂
′
n−1,n V̂ (tn, tn)

)
.
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Then, the decorrelated and standardized observation at time tn is defined to be

ŷ∗(tn) = D̂−1/2
n

[−�̂
′
n−1,n�̂

−1
n−1,n−1̂en−1 + (

y(tn) − μ̂(n−1)(tn)
)]

,

where D̂n = V̂ (tn, tn)−�̂
′
n−1,n�̂

−1
n−1,n−1�̂n−1,n, and �̂

−1
n,n(n) can be computed recursively

by the following formula: for n ≥ 2,

�̂
−1
n,n =

(
�̂

−1
n−1,n−1 + �̂

−1
n−1,n−1�̂n−1,nD̂

−1
n−1�̂

′
n−1,n�̂

−1
n−1,n−1, −�̂

−1
n−1,n−1�̂n−1,nD̂

−1
n−1

−D̂−1
n−1�̂

′
n−1,n�̂

−1
n−1,n−1, D̂−1

n−1

)
.

Then, the decorrelated data {̂y∗(t1), . . . , ŷ∗(tn)} would be asymptotically uncorrelated with
each other, and each decorrelated observation vector would have the asymptotic mean of 0
and the asymptotic covariance matrix of Ip×p .

After the data decorrelation and standardization, we are ready to use a control chart for on-
line process monitoring. To this end, a nonparametric control chart will be considered, since
the process distribution is not restricted to any parametric distribution family in this paper.
In the SPC literature there are many nonparametric control charts available (cf. Chakraborti
and Graham (2019), Qiu (2018)). Theoretically speaking, most of them can be used here.
In this paper, we use the antirank-based nonparametric chart that was suggested by Qiu and
Hawkins (2003), since this chart was shown to have a reasonably good performance in vari-
ous different cases (cf. Qiu (2018)). Then, our proposed process monitoring procedure based
on this chart is described below.

Let Z(n) = (ŷ∗
1 (tn), ŷ

∗
2 (tn), . . . , ŷ

∗
p(tn),0)′ be a combination of the decorrelated observa-

tion ŷ∗(tn) and the IC mean 0 of each of its component. The antirank vector of Z(n) is de-
noted as A(n) = (A1(n),A2(n), . . . ,Ap(n),Ap+1(n))′. Then, by the definition of antiranks,
the A1(n)th component of Z(n) is the smallest among all p + 1 components, the A2(n)th
component of Z(n) is the second smallest component and so forth. Thus, A(n) is the vec-
tor of indices of the order statistics of the p + 1 components of Z(n). Qiu and Hawkins
(2003) demonstrated that the first antirank A1(n) was sensitive to “downward” shifts in the
mean of Z(n), the last antirank Ap+1(n) was sensitive to “upward” mean shifts and the pair
(A1(n),Ap+1(n)) was sensitive to arbitrary mean shifts. For this reason the proposed control
chart will be constructed, based on the pair (A1(n),Ap+1(n)), which can take p(p + 1) pos-
sible values in the set S = {(i, j),1 ≤ i �= j ≤ p + 1}. Let g(n) be a p(p + 1)-dimensional
vector whose lth element equal to 1 when (A1(n),Ap+1(n)) equals the lth element of S
and whose remaining elements are all 0, and f be the IC mean of g(n). At the previous
time point tn−1, f can be estimated by the relative frequencies of the observed values of
{(A1(i),Ap+1(i)),−m0 + 1 ≤ i ≤ n − 1}, and the estimate is denoted as f̂(n−1). Then, the
following CUSUM chart can be constructed based on the comparison of the observed and
expected values of g(n):

(5) Cn = (
Sobs

n − Sexp
n

)′[diag
(
Sexp

n

)]−1(
Sobs

n − Sexp
n

)
,

where ⎧⎪⎪⎨⎪⎪⎩
Sobs

n = Sexp
n = 0 if Un ≤ ρ

Sobs
n = [

Sobs
n−1 + g(n)

]
(Un − ρ)/Un if Un > ρ

Sexp
n = [

Sexp
n−1 + f̂(n−1)](Un − ρ)/Un if Un > ρ,

Un = [(
Sobs

n−1 − Sexp
n−1

) + (
g(n) − f̂(n−1))]′[diag

(
Sexp

n−1 + f̂(n−1))]−1

× [(
Sobs

n−1 − Sexp
n−1

) + (
g(n) − f̂(n−1))],
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diag(a) denotes a diagonal matrix with the diagonal elements being the related elements of
the vector a and ρ > 0 is a prespecified small constant. Then, the chart gives a signal when

(6) Cn > γ,

where γ > 0 is a control limit. In (5), when ρ is chosen to be 0, Sobs
n is just the vector

of cumulative counts of the observed elements in S by the current time point tn, and Sexp
n

is the vector of cumulative expected counts. The use of the small constant ρ is for setting
up the restarting mechanism that the charting statistic Cn in (5) would be reset to 0 each
time when Un ≤ ρ, since Un measures the difference between the cumulative counts of the
observed elements in S and the related expected counts and a mean shift in the original
process is unlikely when Un ≤ ρ. The restarting mechanism mentioned here has been used
by the concept of spring length discussed earlier.

In the nonparametric dynamic process monitoring (NDPM) chart (5)–(6), the constant ρ

is usually prespecified. It has been shown in the literature that large values of ρ are good for
detecting large shifts and small values are good for detecting small shifts (Qiu and Hawkins
(2003)). Once ρ is prespecified, the control limit γ can be determined by a Monte Carlo sim-
ulation to achieve a prespecified value of ARL0 in cases when observation times are equally
spaced. More specifically, f̂(0) can be obtained from the decorrelated and standardized IC
data using the related relative frequencies. Then, for each simulation run the observations
{g(n), n ≥ 1} can be generated from a multinomial distribution specified by the IC distribu-
tion f̂(0). For a given value of γ , the NDPM chart (5)–(6) is then applied to the observations
{g(n), n ≥ 1}, and the run length (RL) value, defined to be the number of observation times
from the beginning of process monitoring to the signal time, is recorded. This simulation is
repeated for M times, and the average of the M RL values provides an estimate of the actual
ARL0 value of the chart, denoted as ARL0(γ ). Then, γ can be searched by a numerical algo-
rithm (e.g., the bisection algorithm) so that the assumed ARL0 value is reached by ARL0(γ )

with a given accuracy; see Qiu and Hawkins (2003) for a more detailed discussion. In cases
when observation times are unequally spaced, ARL0 would not be appropriate for measuring
the IC performance of a control chart, because ARL0 focuses only on the number of obser-
vation times between the start of online process monitoring and the signal time of the chart.
In such cases we should use the IC average time to signal, denoted as AT S0, instead (cf. Qiu
and Xiang (2014)).

2.3. Update of the IC parameter estimates. At the current observation time tn, if the
condition (6) is satisfied, then a signal of shift is given by the chart. Otherwise, the observation
y(tn) should be combined with the existing IC dataset, and the estimates of the IC parameters
should be updated using the combined IC dataset. In this latter case the formulas for updating
the IC parameter estimates are given below.

First, for the estimate of the IC mean function μ(t), it can be calculated by the following
updating formulas:

(7) μ̂(n)(t) = [
β̂

(n)]′
(Ip×p ⊗ e1),

where β̂
(n) = [Q(n)]−1J(n), and Q(n) and J(n) can be updated recursively by

Q(n) = Q(n−1) + [kn ⊗ Xn](Ip×p ⊗ Xn)
′,

J(n) = J(n−1) + [
kny(tn)

] ⊗ Xn,

Xn = (1, t∗n − t)′, kn = diag(kh1(t
∗
n − t), kh2(t

∗
n − t), . . . , khp(t∗n − t)), and khl

(t∗n − t) =
K((t∗n − t)/hl)/hl , for l = 1,2, . . . , p.
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Since the serial correlation is allowed to be nonstationary in this paper and at the next ob-
servation time tn+1 we only need to estimate the covariance between y(tn+1) and its previous
bmax observations, these covariance estimates can be defined by

V̂ (tn+1−j , tn+1) =
( n+1−j∑

l=n+1−j−w

n+1∑
k=n+1−w

(
y(tl) − μ̂(n)(tn+1−j )

)(
y(tk) − μ̂(n)(tn+1)

)′
× K

(
tl − tn+1−j

q

)
K

(
tk − tn+1

q

))
(8)

/( n+1−j∑
l=n+1−j−w

n+1∑
k=n+1−w

K

(
tl − tn+1−j

q

)
K

(
tk − tn+1

q

))
,

where 0 ≤ j ≤ bmax, w is a prespecified window size, and K(·) and q are the same as those
in (4).

Finally, the estimate of the IC distribution of (A1(n),Ap+1(n)) can also be updated by the
following formula: for n ≥ 1,

f̂(n) = m0 + n − 1

m0 + n
f̂(n−1) + 1

m0 + n
g(n).

2.4. Practical guidelines on parameter selection. There are a number of parameters in
the NDPM chart (5)–(6) that need to be selected properly in advance. To this end, some
practical guidelines based on extensive numerical studies are given below.

On selection of bmax: In the NDPM chart, two process observations are assumed to be
uncorrelated when their observation times are, at least, bmax apart. In practice, bmax is often
unknown and needs to be prespecified. Of course, it is better to choose a larger value for
bmax, but the related computation in data decorrelation would be more extensive. Based on
our extensive numerical experience, the performance of the NDPM chart would be reasonably
good when we choose bmax ∈ [10,20].

On selection of w: The window size w is used when computing the estimate V̂ (tn+1−j ,

tn+1) in (8). Based on our numerical experience, it can be chosen to be w = α × bmax with
α ∈ [4,6].

3. Numerical justifications of the proposed method. In this section we provide some
numerical justifications of the proposed method using Monte Carlo simulations. For sim-
plicity, the IC observation times are assumed to be {tj = (m0 + j)τ, j = −m0 + 1,−m0 +
2, . . . ,0}, which are equally spaced in the baseline time interval [0, T ] = [0,1], where
τ = 1/m0 is the basic time unit. For the IC model (1) it is assumed that p = 3 (i.e., there
are three variables to monitor), and the following six different cases are considered. In Cases
I–III the process mean functions are time-independent and assumed to be μ(t) = (0,0,0)′,
for any t ∈ [0,1]. In Case I, the random errors {ε(tj ), j ≥ 1} are assumed to be independent
and identically distributed (i.i.d.) at different observation times, and each random error vector
has the distribution N3(0, I3×3). In Case II, the random errors {ε(tj ), j ≥ 1} are assumed to
follow the vector AR(1) model ε(tj ) = 0.2ε(tj−1) + η(tj ), for j ≥ 1, where ε(t0) = 0 and
{η(tj ), j ≥ 1} are i.i.d. at different time points, each component of η(tj ) has the standardized
chi-square distribution (χ2

3 − 3)/
√

6 and the covariance matrix of η(tj ) is⎛⎜⎝ 1 0.2 0.22

0.2 1 0.2
0.22 0.2 1

⎞⎟⎠ .
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In Case III, the random error vector is ε(tj ) = diag(1, exp(t), 1
1+t

)ε∗(tj ), for each j , where
ε∗(tj ) follows the vector time series model ε∗(tj ) = 0.2tj ε

∗(tj−1) + η(tj ) and η(tj ) has the
same distribution as that in Case II. In Cases IV–VI, the process observations are generated
in the same way as those in Cases I–III, respectively, except that the IC mean functions are
assumed to be μ(t) = (0, t, sin(2πt))′, which are time-dependent. Obviously, Case I is the
conventional case considered in the SPC literature with i.i.d. process observations and the
normal IC distribution. Cases II and III consider cases with stationary and nonstationary se-
rial correlation, respectively, and with a nonnormal error distribution. While the IC process
distribution considered in these first three cases is time-independent, the IC process distri-
bution considered in Cases IV–VI is time-varying, and these three cases are considered for
studying the impact of the time-varying IC distribution on the performance of the related
process monitoring methods.

Besides the proposed method NDPM, we also consider six alternative methods for compar-
ison purposes, including three simplified versions of NDPM, the method by Qiu and Hawkins
(2003) and two machine learning methods by Sukchotrat, Kim and Tsung (2010) and He,
Jiang and Deng (2018). The first simplified version of NDPM, denoted as NDPM-D-S, is the
same as NDPM, except that the covariance structure is assumed to be stationary. In the label
NDPM-D-S, “D” implies that the dynamic nature of the process under monitoring is consid-
ered in the chart, and “S” denotes stationary serial correlation. The second simplified version,
denoted as NDPM-ND-NS, assumes that the IC process distribution is time-independent (i.e.,
nondynamic), and the other setups are the same as those for NDPM. The third simplified ver-
sion, denoted as NDPM-ND-S, assumes that the process under monitoring is nondynamic
and the serial correlation is stationary. The method by Qiu and Hawkins (2003) is based on
the first and last antiranks of the p variables. This method, which is denoted as AR, assumes
that process observations at different observation times are i.i.d. when the process is IC. The
machine learning method by Sukchotrat, Kim and Tsung (2010) is based on the K-nearest-
neighbor (KNN) data description procedure. It uses the average distance between a given
observation and its k nearest observations in the IC dataset as the charting statistic. Its con-
trol limit is chosen by a bootstrap procedure from the IC dataset. This method is denoted as
KNN. The method by He, Jiang and Deng (2018), denoted as DSVM, uses the support vec-
tor machine (SVM) framework. Its control limit is also determined by a bootstrap procedure
from the IC data.

In all simulation examples we assume that the nominal ARL0 value is 200 for all control
charts. By the suggestion in Sukchotrat, Kim and Tsung (2010), the number of nearest ob-
servations in KNN is chosen to be k = 30. In DSVM, the moving window size is chosen to
be 10, as suggested by He, Jiang and Deng (2018). The constant ρ (cf. the expression after
(5)) in the CUSUM charts of NDPM, NDPM-D-S, NDPM-ND-NS, NDPM-ND-S and AR is
chosen to be 0.5, if there is no further specifications. In NDPM, the parameter bmax is chosen
to be 15, and the moving window size w is chosen to be 5bmax, as suggested in Section 2.4.

3.1. Evaluation of the IC performance. We first evaluate the IC performance of the re-
lated methods. To compute the actual ARL0 value of a chart, an IC dataset of size m0 is first
generated. Then, a control chart is applied to a sequence of 2000 IC process observations
for online process monitoring, and its RL value is recorded. The online process monitoring
is then repeated for 1000 times, and the average of the 1000 RL values is used as an es-
timate of the actual conditional ARL0 value, conditional on the IC data. Finally, to obtain
an estimate of the actual unconditional ARL0 value, all steps described above, starting from
the generation of the IC data to computation of the estimate of the actual conditional ARL0
value, are repeated for 100 times. The actual (unconditional) ARL0 value of the chart is then
estimated by the average of the 100 estimates of the actual conditional ARL0 value. The IC
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TABLE 1
Actual ARL0 values and their standard errors (in parentheses) of seven control charts when their nominal ARL0

values are fixed at 200 and the IC sample size m0 is 500

Case NDPM NDPM-D-S NDPM-ND-NS NDPM-ND-S AR KNN DSVM

I 188 (3.55) 193 (3.43) 191 (3.30) 197 (3.62) 195 (2.89) 166 (4.33) 178 (5.23)
II 184 (3.58) 192 (3.48) 190 (3.27) 195 (3.56) 136 (2.40) 147 (4.93) 152 (5.03)
III 182 (3.11) 153 (3.33) 189 (3.77) 162 (3.37) 120 (3.10) 119 (3.55) 104 (3.32)
IV 188 (3.25) 194 (3.40) 105 (3.28) 147 (3.00) 63 (1.30) 125 (3.19) 149 (4.02)
V 185 (3.37) 193 (3.38) 118 (2.40) 160 (3.04) 61 (1.28) 114 (3.45) 134 (3.11)
VI 183 (3.97) 152 (3.29) 140 (3.76) 138 (3.24) 64 (1.34) 79 (2.92) 94 (2.55)

sample size m0 is first fixed at 500. The results of the estimated actual ARL0 values of the
seven charts in various cases are presented in Table 1, along with their standard errors. From
the table we can have the following conclusions: (i) The charts AR, KNN and DSVM have
a reasonable performance in Case I, when the process observations are i.i.d. with a normal
distribution, but they are unreliable to use in all other cases when some or all of these assump-
tions are violated because their estimated actual ARL0 values are substantially different from
the nominal ARL0 level of 200 in these cases. (ii) The chart NDPM-ND-NS performs well in
Cases I–III when its model assumption of nondynamic IC process distribution is valid, but
its performance is quite poor in Cases IV–VI when this assumption is violated. (iii) The chart
NDPM-D-S performs well in Cases I, II, IV and V, when its assumption of stationary serial
correlation is valid, and quite poorly in Cases III and VI when the serial correlation is actually
nonstationary. (iv) The chart NDPM-ND-S performs well in Cases I and II, when its assump-
tions of nondynamic IC process distribution and stationary serial correlation are valid, and
quite poorly in all other cases when either or both of these assumptions are violated. (v) As
a comparison, the chart NDPM has a reasonably good performance in all cases considered,
since its estimated actual ARL0 values are always within 10% of the nominal ARL0 level. It
should be noticed that observation times are equally spaced in this example. In cases when
observation times are unequally spaced, the sampling rate to collect process observations is
steady over time, and AT S0 values are considered; our numerical studies confirm that similar
conclusions to those mentioned above can be made about the IC performance of the related
control charts.

The performance of the seven charts discussed above could be affected by the IC data size
m0. To study the impact of m0 on their performance, we consider the following example in
which m0 changes among 200, 300, 400, 500, 800, 1000 and all other setups remain the same
as those in the example of Table 1. The estimated actual ARL0 values of the seven charts in
such cases are presented in Figure 2. From the figure we can have the following conclusions.
First, the IC performance of the charts AR, KNN and DSVM improves in Case I when m0
increases, the chart AR has a reasonably reliable IC performance when m0 ≥ 300 and the
charts KNN and DSVM have a quite reliable IC performance when m0 > 500. But, in all
other cases, the improvement of their IC performance is minimal when m0 increases. Second,
the IC performance of the charts NDPM-D-S, NDPM-ND-NS and NDPM-ND-S improves
when m0 increases in cases when their model assumptions are all valid (e.g., in Cases I, II,
IV and V for the chart NDPM-D-S). In cases when some of their model assumptions are
invalid, the improvement is minimal. Third, the IC performance of NDPM improves in all
cases considered when m0 increases, and its IC performance is quite reliable when m0 ≥ 400
since its actual ARL0 values are within 10% of the nominal ARL0 value of 200 in such cases.

The results in Figure 2 and Table 1 are for cases when the number of variables, p, is three.
Of course, the necessary IC sample size m0 would depend on p. To investigate this, let us
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FIG. 2. Estimated actual ARL0 values of seven control charts when their nominal ARL0 values are fixed at 200,
the IC sample size m0 changes among 200, 300, 400, 500, 800 and 1000 and other setups remain unchanged from
those in the example of Table 1.

consider a case extended from Case V to a p-dimensional case as follows. In the new case,
the p-dimensional random errors {ε(tj ), j ≥ 1} are generated as described in Case V. For
the mean vector μ(t), we choose μ3�+1(t) = μ1(t), μ3�+2(t) = μ2(t) and μ3�+3(t) = μ3(t)

for � ≥ 1, where μ1(t), μ2(t) and μ3(t) are the same as those in Case V. Because the IC
process is dynamic and the serial correlation is stationary in this case, we choose to study the
IC performance of the charts NDPM-D-S and NDPM only. When p changes among {3,5,7}
and other setups are the same as those in Figure 2, their estimated actual ARL0 values are



58 X. XIE AND P. QIU

FIG. 3. Estimated actual ARL0 values of the charts NDPM-D-S and NDPM in a p-dimensional case extended
from Case V when the nominal ARL0 value of each chart is fixed at 200 and p changes among {3,5,7}.

presented in Figure 3. From the figure it can be seen that the necessary IC sample size m0
should indeed be larger to have a reliable IC performance of these two charts when p is larger.

3.2. Evaluation of the OC performance. Next, we evaluate the OC performance of the
related charts in cases when m0 is fixed at 500. To this end, a mean shift starting at the
beginning of process monitoring is considered, and the shifted mean becomes μ1(t) = μ(t)+
δ(σ1(t), σ2(t), σ3(t))

′, where σj (t) is the standard deviation of yj (t), for j = 1,2,3 and δ

is a constant that changes among 0.2, 0.4, 0.6, 0.8 and 1. To make the comparison among
different charts fair, the control limits of the related charts have been adjusted properly so
that their actual ARL0 values all equal to the nominal ARL0 value of 200. First, we let the
procedure parameters of the charts be the same as those in Table 1. In such cases the computed
ARL1 values of the seven charts are presented in Figure 4. From the figure we can have the
following conclusions: (i) The chart NDPM has the best performance in Case VI when the
process under monitoring is dynamic with nonstationary serial correlation. (ii) The charts
NDPM and NDPM-ND-NS perform better than the other control charts in Case III when
the process under monitoring is nondynamic and the serial correlation is nonstationary. (iii)
The charts NDPM and NDPM-D-S perform better than the other methods in Case V when
the process is dynamic and the serial correlation is stationary. (iv) The charts NDPM-ND-S
NDPM-D-S and NDPM-ND-NS perform better than the remaining charts in Case II when
the process is nondynamic and the serial correlation is stationary. (v) The charts AR, KNN
and DSVM have a reasonable performance in Case I when the process observations are i.i.d.
and normally distributed, but their performance in other cases are not satisfactory. Of course,
the performance of the related charts may depend on the selection of their parameters (e.g.,
the constant ρ in the NDPM chart (5)–(6)). To avoid this impact on the method comparison,
next, we adjust the procedure parameters for each method so that its ARL1 value reaches the
minimum for detecting a given shift while its ARL0 value is kept at the nominal level of 200.
Namely, the optimal performance of the related charts is considered here. As a result, the
optimal ARL1 values of the seven charts are shown in Figure 5. From the figure it can seen
that similar conclusions to those from the example of Figure 4 can be made here regarding
the optimal OC performance of the charts. These two examples show that the charts NDPM-
D-S, NDPM-ND-NS, NDPM-ND-S, AR, KNN and DSVM have reasonable performance
only when their model assumptions are valid and that the chart NDPM has a reasonable
performance in most cases considered.

4. Application to air pollution surveillance in Beijing. With the rapid industrial de-
velopment over the last several decades in China, the environmental pollution in that
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FIG. 4. ARL1 values of the seven charts when their nominal ARL0 values are all fixed at 200, p = 3, m0 = 500,
their procedure parameters are chosen as in the example of Fig. 2, and the shift size parameter δ changes among
0.2, 0.4, 0.6, 0.8 and 1.0.

country has become a problem that seriously damages public health. Beijing, the capital
and one of the most populous cities of China, has suffered severe environmental pollu-
tion (cf. Figure 1 in Section 1). Possible causes of Beijing’s air pollution include large-
scale coal combustion, increasing number of motor vehicles, meteorological conditions
and more (Liang et al. (2015)). This problem has got the government’s attention in the
past 10–15 years, and they are implementing several preventional measures to control the
coal combustion and vehicle emissions. Beijing government also developed a pollution
alert system in 2013 to collect air pollution data. Part of the data is saved in the UC
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FIG. 5. Optimal ARL1 values of the seven charts when their nominal ARL0 values are all fixed at 200, p = 3,
m0 = 500, and the shift size parameter δ changes among 0.2, 0.4, 0.6, 0.8 and 1.0.

Irvine Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets/Beijing+Multi-
Site+Air-Quality+Data). This dataset contains several air quality variables and meteorologi-
cal variables. It has been used by environmental researchers for accessing the air quality in
Beijing (e.g., Zhang et al. (2017)). In this section we apply the proposed dynamic process
monitoring method NDPM to this dataset for air pollution surveillance. In this analysis the
two most important air quality variables, that is, the density levels of PM2.5 and CO, as well
as the meteorological variable “dew point temperature (DEW)” are considered. While not a
pollutant, per se, the meteorological variable DEW is considered here because it has been

http://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
http://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
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FIG. 6. Original observations of PM2.5, CO and DEW in Beijing during 3/1/2014–2/28/2016. The vertical
dashed line in each plot separates the IC data from the data for online process monitoring.

confirmed in the meteorological and environmental research that it is one of the most impor-
tant meteorological variables that can substantially influence the air quality, especially the
PM2.5 level (Chaloulakou et al. (2003), Liu, Zhou and Lu (2020), Zhang et al. (2017)). That
is because a higher DEW often implies a higher humidity and a high temperature, and the fog
and/or haze formed in that meteorological condition are ideal for many air pollutants, includ-
ing PM2.5. The dataset used here contains observations of the three variables in two whole
years from March 1, 2014 to February 28, 2016. The original data of the three variables are
shown in Figure 6.

From Figure 6 there is a quite obvious seasonality in the observed data; the density levels
of PM2.5 and CO seem higher during winter times, and DEW seems higher in summer times.
Also, the data in the first year, from March 1, 2014 to February 28, 2015, seem quite stable,
although the CO levels during the winter times in that year are relatively high due mainly
to a large amount of coal consumption in northern China during winter times (cf. Li et al.
(2020)). Therefore, the data in the first year are used as the IC data for estimating the regular
longitudinal pattern of the three variables, and the data in the second year are used for online
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process monitoring. For the IC data we first compute the initial LLK estimate μ̂(0)(t), using
(3), and then obtain the residuals y(tj ) − μ̂(0)(tj ), for each j . To check the normality of the
IC data, the Shapiro–Wilk test is then applied to the residuals, and the test gives a p-value
of 2.2 × 10−26, implying that the IC data are significantly nonnormal. To check the serial
correlation, the Durbin–Watson test is applied to the residuals for each variable. The p-value
of this test for each variable is < 10−10, implying a significant autocorrelation in the IC
data. To check the stationarity of autocorrelation, the augmented Dickey–Fuller (ADF) test
is used for each variable. The p-value of this test for each variable is larger than 0.1. Thus,
we fail to reject the null hypothesis that “autocorrelation is nonstationary” for each variable
and conclude that the autocorrelation in the IC data is nonstationary. To check the correlation
among the three variables in the IC data, the following sample correlation coefficient matrix
is obtained: ⎡⎣1.000 0.749 0.730

0.749 1.000 0.601
0.730 0.601 1.000

⎤⎦ .

Pearson’s correlation test for checking whether the pairwise correlation is significant gives
the p-values of 2.2 × 10−26 for all three pairs (PM2.5, CO), (PM2.5, DEW) and (CO, DEW).
Therefore, there is a significant pairwise correlation among the three variables in the IC data.

Next, we apply the proposed dynamic process monitoring method NDPM to this dataset.
As discussed in Section 2.1, we first estimate the IC mean functions and the IC covariance
function from the IC data by (3) and (4). The IC data and the estimated IC mean functions
are shown in the first row of Figure 7 from which it can be seen that the estimated IC mean
functions describe the IC longitudinal pattern of the three variables well. Then, the proposed
method NDPM is used for sequentially monitoring of the observed data in the second year
starting from March 1, 2015, as discussed in Sections 2.2 and 2.3. The setups of the chart
(5)–(6), for example, ARL0 and computation of its control limit, are the same as those in the
example of Table 1. The chart gives the first signal on November 28, 2015, which is two
days earlier than the orange alert issued by the Beijing government on November, 30, 2015.
To investigate whether this signal is real, observations of the three variables in the second
year, during March 1, 2015 and February 28, 2016, are shown in the second row of Figure 7
along with the estimated IC mean functions shown by the solid curves in the plots. It can
be seen that the longitudinal pattern of the observations is quite different from the estimated
IC mean functions around the signal time shown by the vertical dashed lines in the plots.
To further show the difference, the observed data of the three variables during October 1st
and December 31st in years 2014 and 2015 are shown in the same plots of the third row of
Figure 7. It can be seen that the two sets of data are similar at the beginning and then start to
deviate around November 1. Such deviations are detected by NDPM on November 28, 2015.

As a comparison, the other six control charts, discussed in Section 3, are also applied to
this dataset with the same setups as those in the example of Table 1. These control charts
are shown in Figure 8 along with the chart NDPM. From the figure it can be seen that the
chart AR gives signals almost everyday, and the charts NDPM-D-S, NDPM-ND-NS, NDPM-
ND-S, KNN and DSVM give their first signals on December 7th, 22th, 8th, 8th and 15th
of 2015, respectively. As mentioned earlier, the proposed chart NDPM gives its first signal
on November 28, 2015. By the visualization of the observed data shown in Figure 7 and
the hypothesis test results discussed earlier, which confirm that the observed IC data are
nonnormal and have nonstationary autocorrelation, we can conclude that the frequent signals
from AR may not be reliable in this example because its assumptions that the IC process
observations are i.i.d. would be violated here and that the proposed chart NDPM should be
more reliable and effective than its peers in this example for early detection of the air quality
deterioration started around November 1, 2015.
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FIG. 7. The first and second rows show observations of the three variables PM2.5, CO and DEW in Beijing dur-
ing 3/1/2014–2/28/2015 and 3/1/2015–2/28/2016, respectively. The solid curve in each plot denotes the estimated
IC mean function of the related variable. The third row shows observations of the three variables during October
1st and December 31st in years 2014 and 2015 by the solid and dotted lines, respectively. The vertical dashed line
in each plot denotes the signal time of the proposed method NDPM.

5. Concluding remarks. Environmental pollution has become a major global problem,
causing serious consequences on public health. Governments in the world are taking proper
measures to reduce and control pollution emissions in order to improve the quality of our
environment. In this effort, effective online monitoring of the air pollutant concentrations
is especially important for governments to take proper interventions in a timely manner and
protect public health. In this paper, we have developed a new method for air pollution surveil-
lance. The new method can properly accommodate the dynamic longitudinal pattern of the
process under monitoring and serial correlation in the observed data. It also is not limited
to parametric distributional families. Both simulation studies and the application to monitor
the air quality in Beijing show that it performs well in various cases. Although air pollution
surveillance is focused in this paper, we would like to point out that our proposed method
is actually quite general and can be applied to other dynamic process monitoring problems,
including sequential monitoring of incidence rates of one or more infectious diseases (e.g.,
flu, COVID-19) in a region, online monitoring of sea-level pressures in oceanography and
seismic monitoring in physical geography.

The proposed method still has much room for improvement. For instance, when monitor-
ing the air quality in Beijing, besides the major variables PM2.5, CO and DEW that need to be
monitored online, there could be some covariates that provide useful information about the
air quality, including air temperature, air pressure, wind speed and other weather conditions.
Proper use of such covariates could potentially improve the performance of the proposed
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FIG. 8. Seven control charts for online monitoring of the air pollution data in Beijing during March 1, 2015 and
February 28, 2016. The horizontal dashed line in each plot denotes the control limit of the related control chart.

method. Also, the current method is for monitoring the air quality at a single location. In
practice, the air quality of multiple locations (e.g., Beijing and its surrounding cities) could
be spatially correlated, and it could improve the effectiveness of the control chart to monitor
the air quality at multiple locations simultaneously. This is related to the spatiotemporal pro-
cess monitoring problem (e.g., Yang and Qiu (2020)). However, the current methods for spa-
tiotemporal process monitoring consider a single quality variable only, while there could be
multiple quality variables in practice. Also, the nonparametric spatiotemporal process moni-
toring methods require many spatial locations to be in the observed data since they are based
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on nonparametric spatial smoothing that cannot work well in cases with only a few spatial
locations. All these topics will be studied carefully in our future research.
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