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Abstract Machine learning methods have been widely used in different applica-
tions, including process control and monitoring. For handling statistical process
control (SPC) problems, the existing machine learning approaches have some lim-
itations. For instance, most of them are designed for cases in which in-control (IC)
process observations at different time points are assumed to be independent and
identically distributed. In practice, however, serial correlation almost always exists
in the observed sequential data, and the longitudinal pattern of the process to monitor
could be dynamic in the sense that its IC distribution would change over time (e.g.,
seasonality). It has been well demonstrated in the literature that control charts could
be unreliable to use when their model assumptions are invalid. In this chapter, we
modified some representative existing machine learning control charts using non-
parametric longitudinal modeling and sequential data decorrelation algorithms. The
modified machine learning control charts can well accommodate time-varying IC
process distribution and serial data correlation. Numerical studies show that their
performance are improved substantially for monitoring different dynamic processes.

Keywords Control chart - Data correlation + Dynamic processes - Machine
learning - Seasonality - Statistical process control

1 Introduction

Statistical process control (SPC) provides a major tool for online monitoring of
sequential processes [16, 22, 26]. Most conventional SPC charts are designed for
detecting process distributional shifts under the assumptions that process observa-
tions at different time points are independent and identically distributed (i.i.d.) with
a parametric (e.g., Normal) distribution when the process under monitoring is in-
control (IC). In practice, however, observed data of a sequential process are often
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serially correlated, and dynamic in the sense that their IC distribution varies over
time. This chapter focuses on online monitoring of dynamic processes with serially
correlated data.

In the SPC literature, many control charts have been developed, which can be
roughly classified into the following four categories: Shewhart, cumulative sum
(CUSUM), exponentially weighted moving average (EWMA), and change-point
detection (CPD) charts (cf., [17, 24, 30, 31]). As mentioned above, early con-
trol charts are designed mainly for cases when the observed IC data are 1.1.d. and
parametrically distributed. After SPC finds more and more applications for disease
surveillance, environmental monitoring, business management, and many others, the
conventional model assumptions mentioned above are rarely valid in these applica-
tions. It has been well demonstrated in the literature that control charts would be
unreliable to use in cases when one or more of their model assumptions are invalid
(e.g., [4, 20, 27]). So, some recent SPC research has considered cases when the IC
process distribution does not have a parametric form (e.g., [10, 27]), process obser-
vations are serially correlated (e.g., [5, 29, 38]), or the IC process distribution is
time-varying (e.g., [28, 36]).

In recent years, machine learning methods have been under rapid development
(e.g., [1, 8, 14]). Since an SPC problem can be regarded as a binary class classifi-
cation problem, in which each process observation needs to be classified into either
the IC or the out-of-control (OC) status during sequential process monitoring, some
machine leaning methods using both the IC and OC historical data have been used
for process monitoring in the SPC literature. For instance, support vector machine
(SVM), linear discriminant analysis (LDA), and k-nearest neighbors (KNN) meth-
ods have been employed for various process monitoring problems (i.e., [21, 39]).
However, unlike the conventional classification problem, most SPC applications only
involve IC training data before online process monitoring. To overcome this diffi-
culty, some machine leaning algorithms, such as KNN, SVM, and random forest
(RF), have been adapted to develop control charts using the one-class classification,
artificial contrast, real-time contrast, and some other novel ideas (e.g., [12, 21, 34]).
An attractive feature of these control charts based on machine learning algorithms is
that they usually do not impose restrictive model assumptions explicitly. However,
most of them require the implicit assumptions that process observations at different
observation times are independent and identically distributed in order to define their
decision rules properly. Therefore, such machine learning approaches have much
room for improvement.

In Xie and Qiu [37], we modified some representative existing machine learning
control charts so that the modified charts can properly accommodate serial corre-
lation in process observations. However, these modified charts still assume the IC
process distribution to be time-independent. Thus, they cannot be used in cases when
the IC distribution is actually time-varying. In this chapter, we further modify the
representative existing machine learning control charts considered in Xie and Qiu
[37] so that the modified charts can accommodate both serial data correlation and
time-varying IC process distribution, by using nonparametric longitudinal modeling
and sequential data decorrelation algorithms. More specifically, in a modified control
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chart, an IC dataset is required to obtain an initial estimate of the IC longitudinal
pattern of the dynamic process under monitoring using a nonparametric longitudinal
modeling approach. Then, at the current time point during online process monitoring,
the observed data are first standardized using the estimated IC longitudinal pattern
and then decorrelated with all historical data using a sequential data decorrelation
algorithm. Next, a machine learning control chart is applied to the standardized and
decorrelated data for making a decision whether the process has a distributional shift
at the current time point or not. Numerical studies show that the modified machine
learning control charts are substantially improved for monitoring different dynamic
processes after such a modification.

The remaining parts of the chapter are organized as follows. In Sect. 2, some rep-
resentative existing machine learning control charts are briefly described. In Sect. 3,
the proposed modification for certain machine learning control charts are described
in detail. Some simulation studies are presented in Sect. 4 to evaluate their numerical
performance. A real-data example to demonstrate the application of the modified
machine learning control charts is discussed in Sect.5. Finally, some remarks con-
clude the chapter in Sect. 6.

2 Some Representative Machine Learning Control Charts

In this section, we introduce some representative recent machine learning control
charts. Assume that X = (X, X5,..., X p)’ is a vector of p > 1 numerical quality
characteristics to monitor about a sequential process, and its observation at time 7 is
X, = (Xu1, Xn2, ..., Xpp)'. To online monitor the sequential process {X,,n > 1},
an initial IC dataset X';c = {X_,,+1, X_my42. - - -, Xo} of size m is assumed to be
available in advance for all methods.

2.1 Control Chart Based on Artificial Contrasts

To solve a classification problem by a supervised machine learning method, a training
dataset containing observations of both classes (e.g., IC and OC) is required. How-
ever, in many SPC applications, we only have an IC dataset before online process
monitoring, and no OC process observations would be available in advance. To over-
come this difficulty, Tuv and Runger [34] proposed the idea of artificial contrast. By
this idea, artificial data are generated from a given distribution (e.g., Uniform) to rep-
resent the off-target data from the process. More specifically, for individual variables
X, their artificial contrasts are generated independently from uniform distributions
whose ranges are the same as those of X; values in the IC dataset, for/ = 1,2, ..., p.
Then, these artificial observations can be used as OC observations. By generating
an artificial OC dataset, it converts the process monitoring problem to a supervised
learning problem so that any machine learning classifiers, such as SVM and RF, can
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be used. However, this type of control charts are basically Shewhart charts, since the
decision at a given time point during online process monitoring only relied on the
observation at that time point. To overcome these limitations, Hu and Runger [19]
suggested a modification by using the ideas of generalized likelihood ratio test and
EWMA. To make a decision about the status of the process under monitoring at the
current time point n, the log likelihood ratio of observed data X,, is first calculated
as [, = log [ﬁl(X,,)] — log [ﬁO(X,,)] , forn > 1, where p;(X,,) and py(X,) are the
estimated probabilities of X,, in each class obtained by the RF classifier. Then, they
considered the following univariate EWMA charting statistic (cf., [30]):

E,=M,+ (1 —=ME,, forn > 1, (D

where A € (0, 1] is a weighting parameter. The chart gives a signal of process mean
shift at time n if
E, > hyc, ()

where & 4¢ is a control limit. The chart (1)—(2) is called AC chart hereafter to represent
“artificial contrast.”

For the AC chart (1)-(2), its control limit & 4¢ can be determined by a 10-fold
cross-validation (CV) procedure to achieve a given value of the IC average run
length (ARL), denoted as AR L. More specifically, 90% of the IC dataset X;¢c and
the artificial contrast dataset is first used to train the RF classifier. Then, a bootstrap
sample can be drawn with replacement from the remaining 10% of the IC dataset,
and the chart (1)—(2) with a given & 4¢ can be applied to the bootstrap sample. The run
length (RL) value, defined to be the number of observation times from the beginning
of process monitoring to the signal time, can then be recorded. Finally, the above
procedure can be repeated for V times, and the average of the corresponding V values
of RL can be used as the estimate of the ARL. Then, h 4 can be searched so that
a given level of AR L is reached. In this searching process, the bisection algorithm
(Qiu [26], this chapter) or its modifications [9] can be used.

2.2 Control Chart Based on Real Time Contrasts

The classifier in the method AC is trained only one time using the IC dataset X;¢
and the artificial OC dataset, which may not represent the actual off-target process
observations well in a given application. To overcome this limitation, Deng et al. [12]
suggested the so-called real-time contrast (RTC) method. The RTC method treats the
process monitoring problem as a real-time classification problem, in which process
observations in the IC dataset and those within a moving window of the current time
point form a training dataset, with the former as IC observations and the latter as OC
observations. More specifically, a dataset with Ny observations, which is denoted as
So, is first randomly selected from the IC dataset X;¢. Then, during online process
monitoring, process observations in a window of the current observation time point
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n are treated as OC data and denoted as S, = {X;—y+1, Xy—w+2, - - - » Xp}, Where w
is the window size. Then, the RF classifier can be retrained sequentially overtime
using the training dataset that combines Sg and S,,. As discussed in Deng et al. [12],
there could be several possible charting statistics based on the RF algorithm. As in
their simulation studies, the average estimated classification rate in the dataset S
can be used as the charting statistic, which is defined to be

0
Ro= Y p"(X)I(X; € Sp)/No, forn > 1, 3)
i=—mo+1

where 13(()”) (X;) are the estimated probabilities of X; in the IC class obtained by the

RF classifier trained at time n, and 7 (#) is the indicator function that equals 1 when
u is “true” and O otherwise. The chart gives a signal at time n if

R, > hgre, “)

where h g7 is a control limit of the RTC chart.

The control limit of the RTC chart (3)—(4) can be determined by the following
bootstrap procedure suggested by Deng et al. [12]. First, we draw with replacement
a sample from the IC dataset after the observations in Sy are excluded. Then, the
chart (3)—(4) with the control limit / g7 ¢ is applied to the bootstrap sample to obtain
a RL value. This bootstrap re-sampling procedure is repeated for B = 1,000 times,
and the average of the B values of RL is used to approximate the ARL value for
the given hgrc. Finally, hgre can be searched by a numerical algorithm so that the
assumed AR L value is reached.

2.3 Control Chart Based on Support Vector Machine

Even though the RTC chart based on the RF classifier is useful and can be applied to
a variety of monitoring problems, its charting statistic takes discrete values, which
makes it less effective in some cases. As an alternative, He et al. [18] proposed a
distance-based control chart. It uses the SVM framework to measure the distance
between the support vectors and real time observations in S,,. As discussed in He et
al. [18], the distance from a sample of process observations to the boundary surface
defined by the support vectors can be either positive or negative. They suggested
transforming the distance using the following standard logistic function:

1

8D = T axpcd)’

Then, the following average value of the transformed distances from individual obser-
vations in S, to the boundary surface can be defined to be the charting statistic:



70 X. Xie and P. Qiu

n

M,= Y gdX))/w, forn>1, (5)
j=n—w+1

where d (X;) is the distance from the observation X; to decision boundary determined
by the SVM classifier obtained at time n. The chart gives a signal at time n if

M, > hsyu, (6)

where h gy is the control limit of the chart. The chart (5)—(6) is denoted as DSVM
hereafter, to reflect the fact that it is a Distance-based control chart using SVM. The
control limit of DSVM can be determined by a bootstrap procedure, similar to the
one described above for the RTC chart.

In the above DSVM chart (5)-(6), the SVM algorithm needs to be implemented,
and there are several qualititess involved that need to be selected in advance, includ-
ing the kernel function and the penalty parameter [11]. In SVM, one of the most
commonly used kernel functions is the Gaussian radial basis function (RBF), which
is defined as: for any two observations X;, X,

IX: — X2
G(X;, X;) =exp o2 )

where o2 is the spread parameter. He et al. [ 18] suggested using the above RBF as the
kernel function with 62 > 2.8. They also suggested choosing the penalty parameter
to be 1 for training SVM.

2.4 Control Chart Based on the KNN Classification

Another machine learning control chart, proposed by Sukchotrat et al. [33], is based
on the KNN data description procedure. This chart is denoted as KNN hereafter.
The charting statistic of KNN is defined as the average distance between a given
observation X, and its k nearest observations in the IC dataset X, and it is defined

as follows: )

C2 =Y " |IX, — N;(X)I/k, forn > 1, 7
j=1

where N (X,,) is the jth nearest neighboring observation of X,, in the IC dataset X; ¢,
and || - || is the Euclidean distance. Then, for online process monitoring, the process
is declared to be OC at a given time n if the charting statistic C2 of the related process
observation exceeds the control limit A gy .

Inthe above KNN chart, the control limit /i g y y can be determined by the following
bootstrap procedure: (i) a total of B = 1, 000 bootstrap samples are obtained from
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the training dataset by the random sampling procedure with replacement and each
bootstrap sample has the same size as the training dataset, (ii) the C2 values defined
in (7) of the individual observations in the bootstrap sample can be computed, (iii) the
(1 — a)th percentile of all C2 values can be computed from each bootstrap sample,
and (iv) hg yn is chosen to be the mean of the B such percentiles.

3 Suggested Modified Machine Learning Control Charts
for Dynamic Process Monitoring

For many longitudinal processes, their distributions could change over time, even
when their performance is considered to be IC. One example is about sequential
monitoring of environmental variables, such as air temperature and various pollutant
levels. These variables usually have seasonal variation. To monitor such dynamic
processes, the machine learning control charts introduced in the previous section
are obviously inappropriate to use because they require the IC process distribution
to be unchanged over time. Recently, Xie and Qiu [36] suggested a new method
for dynamic process monitoring. The basic idea of that method is to specify a time
period as a baseline time period, estimate the regular longitudinal pattern of the
quality variables in that period, and then compare the future performance of the
process under monitoring with its performance in the baseline time period. In this
section, a procedure for estimating the regular longitudinal pattern is first discussed
in detail. Then, the suggested modification of some representative machine learning
control charts for monitoring dynamic processes using is discussed.

3.1 Estimation of the Regular Multivariate Longitudinal
Pattern

The time period of the initial IC dataset Xj¢ is set as a baseline time interval, and
the IC dataset is assumed to follow the nonparametric longitudinal model:

X;=n;+ej, forj =—-mg+1,—mog+2,...,0, (8)

where ri= (j1s Lj2y e s Mj,,)/is the mean of X ;, and € ; is the p-dimensional zero-
mean error term. In Model (8), the covariance structure is described by Cov(e, € <),
for any j, j* € [-mg + 1, 0]. Furthermore, it is assumed that the serial correlation
among the IC process observations is stationary, and the serial correlation exists
only when two observations are within bp,,x > 0 in their observation indices. More
specifically, it is assumed that y (s) = Cov(e;, € ;) only depends on s when j
changes, and y (s) = 0 when s > bp,,x. The above assumptions should be reasonable
in many applications.
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To obtain an initial estimate of p ;, we can compute the local linear kernel (LLK)
smoothing estimates of all components of j (cf., [35]). In matrix notation, let W =
(X115 X0 oo os Xomortips -0 Xop)s  Zy=[(1,—mo+1—j), ...,
(1,—/)], and K; = diag{K (51),i = —mo+1,—mog+2,...,0,0=1,2,...,
p}, where K (-) is a kernel function and {h;,l =1, 2, ..., p} are bandwidths. Then,
the initial estimate of K, for j = —mo+ 1, —mgy + 2, ..., 0, can be obtained by the
following LLK smoothing procedure:

mingegz [W — (Ipxp, ® Z)B] K; [W = (I, ® Z)B], 9)

where ® denotes the Kronecker product, [, is the p x p identity matrix, and
B = (Bo1, Bi1, - - -, Bop, P1p)" are coefficients. The solution of (9) has the expression

B =1Upxp @L)K;(Ipsp @ LN Uy @ Z,)'K;W.

Then, the initial estimate of K, for j = —mg+ 1, —mg+ 2, ..., 0, is given by:

;=B Iy, ®&), (10)

where &, = (1, 0)'. In the above LLK procedure, the kernel function K (-) is usually
chosen to be the Epanechnikov kernel function, i.e., K (u) = %(1 —ud)I(lu] <1,
because of its good properties [13]. For the bandwidths {h;,[ = 1,2, ..., p}, it has
been well discussed in the literature that the conventional cross-validation (CV)
procedure would not perform well when process observations at different time points
are serially correlated, since the CV procedure cannot properly distinguish the data
correlation structure from the data mean function (e.g., [2, 23]). Thus, we suggest
choosing them using the following modified cross-validation (MCV) procedure that
was originally suggested by Brabanter et al. [7] for handling bandwidth selection in
a univariate regression setup with correlated data. By this approach, the bandwidths
{h;,l =1,..., p} can be chosen by minimizing the following MCV score:

1 —~ —~
MCV(hl’h27"-7hp):m_O Z (X]_IL_J)/(X]_,L_J)’
Jj=—mo+1

where I _ ; is the leave-one-out estimate of u; by (10) when the observation X is

excluded in the computation and when the kernel function K (-) is modified to be
4 3(1 —u®)I(ju| < 1), when |u| > ¢,
K. = $1 6l < 1), when ju] >
4—3e -8 | == |ul, when |u| < ¢,
where ¢ € (0, 1) is a small constant. The modified kernel function K, («) equals O at
u = 0 and is small around u# = 0, to diminish the impact of data autocorrelation on
bandwidth selection.
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As mentioned above, two original process observations are allowed to be cor-
related if their observation times are within by, apart and the serial correlation is
assumed to be stationary. Then, the covariance matrices y (s), for 0 < s < b, can
be estimated by the following moment estimates:

1 _ . .
Z (X.i+s - ”’j—&—s) (Xj - ”'j)/ ) for 0 <s < Dmax.

Y(s) =

3.2 Dynamic Process Monitoring

Next, we discuss online monitoring of the p-dimensional dynamic process with the
observations {X,, n > 1}. When the process is IC, it is assumed that it follows the
regular longitudinal pattern described by Model (8) in the sense that

Xn:ILn‘l‘fna fOI‘nZ 1, (11)

where u,, = m,., n* is an integer in [-mo + 1,0], n = n* + Tmo, T > 1 is an inte-
ger, and the error term €, has the same covariance structure as that in Model (8).

Then, for monitoring dynamic processes using machine learning control charts,
we suggest first standardizing the observed data at the current time point using the
estimated IC longitudinal pattern in (10), and then decorrelating the observed data
with historical data. After a proper data standardization and decorrelation of the
observed data, a machine learning control chart can be used to make a decision
whether the process is IC or not at the current time point. The modified machine
learning control charts for monitoring dynamic processes with serial data correlation
can then be summarized below.

Proposed Dynamic Process Monitoring Scheme using Machine Learning Control
Charts

Step 1 Initial Estimation: Obtain the initial estimates {ﬁj, —mo+1<j <0}
and {Y(s), 0 < s < by} from the initial IC data X;¢, as discussed in Sect.3.1.

Step 2 Data Standardization and Decorrelation: At the current time point n, if
n = 1, then define the standardized observation to be

el =[O X, —#y).

/

Otherwise, the estimated covariance matrix of (X _,, X
to be

/ AR
n—bils -2 X)) 1s defined

y(©0) ---Y(®) -

- Zn—l n—1 En—ln)
Znn = . '.. . = —~ — ’ s
’ SR ( T .. 70

[7®)] ... 70
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where b = min(n — 1, by, ). Then, the decorrelated and standardized observation
at time » is defined to be

~_ -~/ ~—1 o~ o~
eZ = Dn 12 I:_Zn—l,nzn—l,n—IeVl*1 + (X” - Il’”)] ’

where ﬁn = ?(0) - i;_l,n/i;_ll,n_l/z\nfl,n, and /e\nfl = [(Xy—p — ﬁn—b)/,
(Xn—b-H - ﬁn—b—i—l)/v ceey (Xn—l - ﬁn—l)/]/‘
Step 3 Decision-Making: Apply a machine learning control chart to the decorre-

lated and standardized data {e};, n > 1} to see whether a signal is triggered.

4 Simulation Studies

In this section, we investigate the numerical performance of the four existing machine
learning control charts AC, RTC, DSVM and KNN described in Sect. 2, in compari-
son with their two modified versions. The first modified version of these four control
charts are denoted as AC-D-WOC, RTC-D-WOC, DSVM-D-WOC and KNN-D-
WOC, where “D” indicates that the Dynamic nature of the process under monitoring
is considered in the chart, and “WOC” represents ‘WithOut considering serial Cor-
relation. The second modified version of these four control charts are denoted as AC-
D-C, RTC-D-C, DSVM-D-C and KNN-D-C, where the last letter “C” denotes serial
Correlation has been considered. This modified version is discussed in Sect.3.2. In
all simulation examples, the nominal A R L values of all charts are fixed at 200. The
number of quality characteristics is set to be p = 5, and the parameter by, 1s chosen
to be 15. Regarding the IC process distribution and the IC serial data correlation, the
following four cases are considered:

Case I: IC process observations {X,,n > 1} are i.i.d. with the IC distribution
N,©,1)).

Case II:  ICprocess observations {X,,, n > 1} are generated from Model (11). Their
mean and correlation structures are specified in Model (8), where the means are
defined to be

1, = [sin(2wt)), cos2mt;), sin®(2mt;), cos®(2mt;), sin(2mt;) + cos(2mt;)],

tj = (j +mg)/mo for j =—mo+1,—mo+2,...,0, each component of the
error term €; has the standardized X32 distribution, and the covariance matrix of
€ is1,.

J p

Case III: ~ Same as Case II, except that the error terms {e;} are assumed to follow
the vector-AR(1) model €; = 0.2¢;_; + n;, where €9 = 0, each component of
1 ; has the standardized X32 distribution, and the covariance matrix of 5; is I .

Case IV:  Same as Case II1, except that the covariance matrix of 0 ; is X = (07,1,) px p
with ol = 0.5”‘_12|, forl;,lb=1,2,...,p.
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For the four cases described above, Case I is the conventional case with 1.i.d.
mean () IC process observations and the normal IC process distribution. Cases I[I-IV
consider three different dynamic processes. The dynamic process in Case 11 still has
independent observations at different observation times, and the p quality variables
are independent with each other as well. The dynamic process in Case III is the same
as that in Case I, except that process observations are serially correlated. Dynamic
process observations in Case IV are serially correlated and the p quality variables
are mutually associated as well.

4.1 Evaluation of the IC Performance

We first evaluate the IC performance of the related control charts. In the simulation
study, the IC sample size m is fixed at 2,000. The weighting parameter A in the chart
AC and its two modified versions are chosen to be 0.2, as suggested in Hu and Runger
[19], the moving window size w in the charts RTC and DSVM and their modified
versions are chosen to be 10, as suggested in Deng et al. [12] and He et al. [18], and
the number of nearest observations k in the chart KNN and its modified versions is
chosen to be 30, as suggested in Sukchotrat et al. [33]. For each method, its actual
ARL value is computed as follows. First, an IC dataset of size mg is generated
from the IC model, and the IC parameters are estimated from the IC data. Second,
the conditional ARL value of the chart given the IC dataset is calculated based
on 1,000 replicated simulations of online process monitoring of 2,000 sequential
process observations. Third, the previous two steps are repeated for 100 times, and
the sample average of the 100 conditional ARL values is used as the estimated
actual ARL value of the chart. The standard error of the estimated actual ARL,
value can also be computed as the standard deviation of the 100 conditional AR L
values divided by +/100. The estimated AR L values in different cases considered
are shown in Table 1.

From Table 1, we can have the following conclusions. (i) The four original machine
learning control charts all have a reasonable performance in Case I when the process
observations are i.i.d. with a normal distribution, but they are unreliable to use in all
other cases when some or all of these assumptions are violated because their estimated
actual A R L values are substantially different from the nominal A R L level of 200 in
these cases. (i1) The first modified version of the four machine learning control charts
AC-D-WOC, RTC-D-WOC, DSVM-D-WOC, and KNN-D-WOC perform well in
Cases I and II when the independence assumption is valid, but their performance is
quite poor in Cases III and IV when this assumption is violated. (iii) As a comparison,
the second modified version of the four machine learning control charts AC-D-C,
RTC-D-C, DSVM-D-C, and KNN-D-C have a reasonably good performance in all
cases considered, since its estimated actual AR L values are always within 10% of
the nominal AR L level. Therefore, this example confirms that the IC performance
of the machine learning control charts can be improved in a substantial way by using
the suggested modification discussed in Sect.3.2.
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Table 1 Actual ARLg values and their standard errors (in parentheses) of four machine learning
control charts and their modified versions when their nominal A R L values are fixed at 200, p = 5,
and mg = 2, 000

Methods Case | Case 11 Case III Case IV
AC 207(4.22) 53.7(1.40) 44.7(1.44) 42.8(1.37)
AC-D-WOC 195(4.7) 187(3.77) 107(3.38) 110(3.44)
AC-D-C 203(3.96) 193(3.65) 189(3.42) 191(3.74)
RTC 191(3.88) 103(2.33) 89.6(1.74) 90.4(1.83)
RTC-D-WOC 187(3.76) 194(4.27) 142(2.95) 139(2.87)
RTC-D-C 189(3.69) 192(4.08) 206(4.93) 209(5.03)
DSVM 210(4.19) 125(2.67) 113(2.05) 110(2.56)
DSVM-D-WOC | 193(4.30) 196(4.22) 147(3.03) 148(2.99)
DSVM-D-C 191(4.04) 202(3.99) 194(4.12) 195(4.15)
KNN 208(4.36) 141(2.45) 143(2.56) 139(2.41)
KNN-D-WOC 205(4.27) 190(3.15) 170(3.27) 167(2.95)
KNN-D-C 189(3.96) 193(4.20) 202(4.32) 204(4.41)

4.2 Evaluation of the OC Performance

Next, we evaluate the OC performance of the related charts in case whenm = 2, 000.
In order to make the comparison more meaningful, we intentionally adjust the control
limits of different control charts so that their actual AR L values equal the nominal
ARL value of 200 in all cases considered. In the next simulation example, it is
assumed that all quality variables have a same shift at the beginning of online process
monitoring with the shift size § changing from 0 to 1 with a step of 0.25. Because
different control charts have different procedure parameters (e.g., the moving window
sizes of RTC and DSVM) and their performance may not be comparable if their
parameters are set to be the same, here we compare their optimal OC performance
to make the comparison fair. Namely, to detect a given shift by a chart, the related
procedure parameter is chosen by minimizing the OC average run length, denoted as
ARL,, of the chart while maintaining its AR L value at 200. The resulting ARL
value is called optimal A R L value hereafter. The results of the optimal AR L values
of these machine learning control charts and their modified versions in Cases [-IV
are presented in Fig. 1.

From the figure, we can have the following conclusions. First, all four machine
learning control charts and their two modified versions perform reasonably well in
Case I when the process observations are i.i.d. with a normal distribution, since their
model assumptions are all satisfied. Second, The first modified version of the related
control charts AC-D-WOC, RTC-D-WOC, DSVM-D-WOC, and KNN-D-WOC are
the most effective one among the three version of all charts in Case II when the
independence assumption is valid, but are less effective in Cases III and IV when
this assumption is invalid. Third, the second modified version of the four machine
learning control charts AC-D-C, RTC-D-C, DSVM-D-C, and KNN-D-C have the
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Fig. 1 Optimal ARL values of the four control charts and their modified versions when their
nominal AR L values are fixed at 200, p = 5, mg = 2,000, and all quality characteristics have the
same shift with the shift size § changing among 0.25, 0.5, 0.75, and 1

best performance among the three versions of all charts in Cases III and VI when the

process under monitoring is dynamic with serial data correlation.

5 An Application

In this section, we demonstrate the application of the modified machine learning
control charts discussed in Sects.3 and 4 using a real dataset, which contains elec-
tricity generation and weather data in Spain. This dataset can be downloaded from the
web page of Kaggle with the link https://www.kaggle.com/datasets/nicholasjhana/
energy-consumption-generation-prices-and-weather. Electricity is generated using
a variety of resources, including coal, natural gas, nuclear energy, and solar energy,
and its usage usually depends on the meteorological conditions [32]. For examples,
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the colder months often bring more electricity usage as more electricity is spent on
the heating system. However, when excess electricity is generated, much time and
resources would be wasted because electricity cannot be stored in large quantities
efficiently [25]. Therefore, it is important to online monitor the electricity generation
and demand in the electric industry. If something unusual happens (e.g., unseason-
able cold weather), the electric utility companies can take actions quickly to adjust
the amount of electricity generated to meet demand. In this analysis, the amount of
electricity generated by three most common energy sources, including gas, coal and
oil, and two important environmental variables, i.e., temperature and humidity are
considered. The dataset used here contains observations of the five variables during
a time period from January 1, 2015 to December 31, 2016. The original data of these
five variables are shown in Fig. 2. From the figure, it can be seen that there is a quite
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Fig. 2 Original observations of five variables considered in the electricity example. The solid
vertical line in each plot separates the initial IC data from the data for online process monitoring
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Fig. 3 Standardized and decorrelated observations of five variables considered in Fig. 2. The solid
vertical line in each plot separates the initial IC data from the data for online process monitoring

obvious yearly seasonality in the observed data, the temperature is higher during
summer times, and the amount of electricity generated by coal seems higher in the
last six months of each year. In our analysis, the data in the first year are used as the
IC data for estimating the regular longitudinal pattern of the five variables, and the
data in the second year are used for online process monitoring.

For the IC data, we first compute the initial LLK estimates it j by (10), and then
obtain the residuals X; — & j»forall j. Next, we use the Ljung-Box test for checking
serial data correlation in the residuals of each variable. The p-values of this test are
all < 2.3 x 10~? for the five variable. Thus, there is a significant autocorrelation
in the IC data. The Augmented Dickey-Fuller (ADF) test for stationarity of the
autocorrelation gives p-values of <0.01 for all five variables, which implies that the
stationarity assumption is valid in this case. To check the normality assumption for
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Fig. 4 Control charts for online monitoring of the data during January 1 and December 31, 2016.
In each plot, the horizontal dashed line denotes the control limit of the related control chart

the data, the Shapiro test is performed, and it gives a p-values of 2.9 x 107, which
implies that the distribution of the standardized IC data is significantly different from
a normal distribution. Therefore, the four modified control charts AC-D-C, RTC-D-
C, DSVM-D-C and KNN-D-C should be appropriate to use in this example, because
the IC data have a dynamic pattern, significant stationary serial data correlation, and a
non-normal distribution. The standardized and decorrelated data of the five variables
by the procedure discussed in Sect.3.2 are shown in Fig.3, from which it can be
seen that the standardized and decorrelated IC data are indeed quite stable, and the
the standardized and decorrelated data in the second year seem to be quite different
from the IC data starting from the very beginning of the second year.

Next, we apply the four charts AC-D-C, RTC-D-C, DSVM-D-C and KNN-D-C
to this dataset for online process monitoring starting from January 1, 2016. In all
control charts, the nominal AR L values are fixed at 200, and their control limits are
computed in the same way as that in the simulation study of Sect.4. All four control
charts are shown in Fig. 4. From the plots in the figure, the charts AC-D-C, RTC-D-C,
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DSVM-D-C and KNN-D-C give their first signals on the Jan 30th, Jan 28th, Jan 27th,
and Feb 13th, respectively. By checking the standardized and decorrelated process
observations shown in Fig. 3, it seems that all fours chart can detect a systematic
change in the process well and the chart DSVM-D-C gives the earliest signal among
them.

6 Concluding Remarks

Some control charts based on machine learning approaches have been developed
recently in the SPC literature. However, most existing machine learning control charts
are based on the assumptions that the process observations at different time points are
independent and identically distributed. So, they would be unreliable to use in case
when the IC process distribution changes over time. In this chapter, we have suggested
a modification procedure for some representative existing machine learning control
charts using the nonparametric longitudinal modeling and sequential decorrelation
algorithms. Numerical studies show that the performance of these modified control
charts is substantially better than their original versions in cases when the IC process
distribution is time-varying.

There are still some issues about the modified machine learning control charts that
need to be addressed in our future research. For example, these machine learning
methods require a relatively large IC dataset. But, in some applications, a relatively
large IC dataset may not be available. In such cases, self-starting control charts might
be helpful (cf., [15]). In addition, the current proposed methods assume that the serial
correlation in process observations is short-ranged and stationary. Even through these
assumptions should be reasonable in many applications, the serial data correlation
could be long-range and non-stationary in some other applications (cf., [3, 6]).
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